

A BRIEF OVERVIEW OF LAST DECADE IN CLOUD COMPUTING ESSENTIAL FEATURE: RESOURCE ALLOCATION

Maira Khalid¹, Uzma Aziz², Faiza Latif³, Samreen Kanwal⁴ ¹ Institute of Southern Punjab, Multan, Pakistan, maira.khalid7272@gmail.com ²City College of Science and Commerce, Multan, Pakistan, uzma.a579@gmail.com ³City College of Science and Commerce, Multan, Pakistan, faizalatif116@gmail.com ⁴City College of Science and Commerce, Multan, Pakistan, samreenkhan6g@gmail.com

ABSTRACT— In the present era, cloud computing is assumed as an emerging paradigm in service providing systems. Cloud computing demands different types of resources as services for the consumer needs. So, it is a challenge for cloud computing to provide all resources to the consumers without any delays. But resource availability is finite and it is considered as a serious challenge to deliver the required resources to the consumers on exact time. Resources related to cloud are allocated on the fair demands by the consumers and for this reason cloud computing has a challenge to meet the issue of resource allocation. This paper consists of a literature review about the resource allocation in the area of cloud computing that explains the issues and solutions of the problems that occur in resource allocation. Moreover, we have explained the methodologies and techniques that are used in the research papers of the last ten years and we gave comparisons of these techniques for better understanding. This paper will help the new researchers of cloud computing for learning different methods about resource allocation. Furthermore, describes the cloud computing resource allocation strategies and different algorithms used to accomplish the allocation. Additionally, explains the different techniques of different years to highlight the progress and helps the new researcher to comprehend the strategies and algorithms cloud computing, resource allocation.

Keywords --- resource allocation algorithm, resource allocation, cloud computing, distributed computing.

I.INTRODUCTION

In this modern age, technology is considered as basic need of life like water, electricity etc. All consumers demanding these basics for covering basic needs in life. They paid these services for the usage [1] [2]. Like these basic needs, computing became the need of today's technology and meet the all consumers need. This computing is known as cloud computing that provides resources virtually to the consumers on their demand and charge the services according to consumption.

"A Cloud is a type of parallel and distributed system consisting of a collection of interconnected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resource(s) based on servicelevel agreements established through negotiation between the service provider and consumers." [2]. Cloud Computing comprises three (3) services [3] [4] [5] [6].

1) Software as a Service (SaaS)

In Cloud SaaS, consumer practices the applications of cloud service delivered by the cloud infrastructure software service instead of local application. Cloud provider is responsible to maintain the software services provided to the consumer. Consumer has to pay for the services according to their usage SaaS is the best example of the modern technology. (CRM) Customer Relationship Management Salesforge.com are the practical examples of these service model [3] [4] [7] [8] [9].

2) Platform as a Service (PaaS)

In Cloud PaaS, it is a main platform environment provided to developers for creating and deploying the applications. Using this platform, consumers are free from the care about fundamental infrastructure of cloud including networks, servers, storage and operating system but controlled the deploy applications and can run services. Example include for such models: Google Application, Microsoft Azure, Right Scale and Engine [3] [4] [5] [7] [9]

3) Infrastructure as a Service (IaaS)

In Cloud IaaS, it provides large scale of resources for computing in processing and storing. In this service model, consumer have limited control to select network components like host, firewalls and can manage storage, deployed applications, operating system. It is also familiar as HaaS (Hardware as a Service). Examples include for such models: GoGrid , Eucalyptus, Amazon Web Services, Flexiscale and Open Stack, offers IaaS [3] [4] [5] [7] [9].

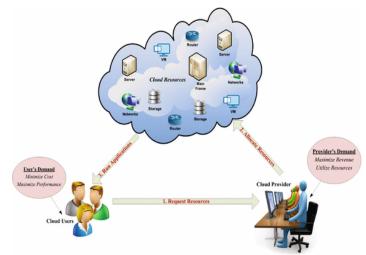
Various deployment models are used in cloud computing depending upon the physical and location distribution. Beside these services, cloud categorizes into four models:

a. Private Cloud

Every device connected to a computer system is a resource (like printers, fax machines etc.) It is a feature/method (resource allocator) used to ensure the efficient use of resources of a system.

b. Community Cloud

Community cloud services are provided to specific community that is shared by organization. This service can be used in organization community of location or allowed community location [3] [4] [5].


c. Hybrid Cloud

Hybrid cloud is the grouping of two or more clouds (Public, Private, Community) [3] [4] [5].

Private cloud services belong to organization only, third party or general public cannot use private cloud services. It is managed by organizations people themselves [3] [4] [5] [10].

d. Public Cloud

Public cloud services are provided to consumers by organization according to the consumer needs and requirements. Consumers have to pay for the services provide by public cloud. Business consumers uses public cloud for

saving the cost of software and hardware but this can lead to data management, data security, level of performance and control issues etc. [3] [4] [5] [10].

Figure 1 RA Cloud Computing

There are many features in cloud computing but the most essential is resource allocation. Resource allocation is defined as it is a process of managing or assigning resources (CPU, memory etc.) in a manner that it fulfills a process requirement to be executed in a system, shown in Figure 1.

1.1 Resource allocation (in cloud computing)

In this process, required available resources are allocated to application that is used by cloud service consumer (CSC) over the internet.

1.2 Importance:

Resource allocation is very important in cloud computing because it gives a clear picture on the amount of work that done by a process/job generated/requested form client side. It helps to monitor and manage resource utilization in an efficient manner. It helps to provide right resource to a user/process at the right time. It improves the Quality of Service (QoS) of a system by maximizing the efficient of resources.

1.3 Advantages:

- a. Maximize the utilization of resources
- **b.** Improve response time management
- c. Automatic Manage task workload

1.4 Disadvantages:

Execution time is limited (in the case of bad internet connection).

Year	Techniques/algorithms	Effects
2011	EDF (Earliest Deadline First)	Response Time
2012	Priority based Allocation	Task completion before deadline
2013	Schedular for Data	Task completion within allocated time
2014	Efficient Resource Allocation Service	Minimum delay in data transfer
2015	Green Cloud Computing	Efficient energy/power utilization in data center
2016	Modified Round Robin Algorithm	Dynamic response time or time slice
2017	DPM (Distributed Power Management)	Reduce power consumption
2018	Heuristic Approach for Allocation and Scheduling	Minimize response time and maximize resource allocation utilization efficiency
2019	Virtual Machine Model Placement	Reduce cost
2020	Priority Based Allocation	Minimum cost, and resource utilization
2020	Priority Based Allocation	Minimum cost, and resource

Table 1: Techniques/algorithms used for Resource Allocation in Cloud Computing

II. LITERATURE REVIEW AND METHODOLOGY

Table 2: Methodologies used for Resource Allocation in the domain of Cloud Computing

Paper Name	Methodology
Resource Allocation for	This paper is almost complete description of resource allocation for performing the tasks of real time
Real-Time Tasks using	using IaaS model of cloud computing. So, user can select different computer resources based on the
Cloud Computing [11],	requirement. Real time task means to complete the tasks before deadline. Cloud computing suggests
2011.	the resources with different speed, performance and cost. Efficiently allocation of resources is a big
	or main issue. We examine the problem and allocate the demanded resources for purpose real time
	task so in this way economical cost is reduced and all tasks are completed before the deadline. Paper
	describes the allocation of resources efficiently. For the solution of problem one method is introduced
	that is EDF (earliest deadline first). There are many real time applications which required completing
	their workload before deadline such as object recognition that is hosted on the cloud. So, object is
	recognized within specified time period and gives value to the users. This study is different from
	previous study first it examines the schedule on a given numbers of process and second the available
	virtual machines are infinite. At any instant so we can select different types of virtual machine based
	upon the computing resources and cost also. If user select slower or cheaper VMS and tasks is
	completed before deadline. Cost of VMs charges is fixed for a given rental period. if task is completed
	before hour so VMs is ready or available for next task that arrive within an hour.so, in EDF method
	first identified the deadline of task and identified the tasks whose deadline comes first and allocate
	resources to do that task before deadline.so it helps to allocates resource efficiently.
Priority Based Dynamic	The concerned paper explains priority-based resource allocation in which resources provides
resource allocation in	according to user need to satisfy the customer needs. This may provide resource allocation in priority
Cloud Computing [12],	basis and provided services guaranteed and reliable to user for the paid services. In this paper,
2012.	parameters like memory, network bandwidth are explained and allocate resources to complete the
	task before allocated time. Resources are allocated on the behalf of user requirements after
	completing current task (Virtualization Model) VMs are free and ready to do next task and allocate
	these free resources to another task.
Resource Allocation in a	Cloud computing becomes popular day by day. Each provider offers a unique service. In this paper,
Network-Based Cloud	several internal and external factors that affect the working based on allocation model of resources
Computing	as discussed. To move on cloud client demands guarantees with regards to improve the reliability of
Environment: Design	operations and cost because network performance and resource availability is very important in any
Challenges [13], 2013.	cloud. Following are main design challenges such as geographical challenges, reliability for
	resources of network inside a DC (Data centers), SDN design challenges inside DCs.
	Geographical and regulative challenges:
	In Virtualization Model (VM) concerned client may not be able to manage their data on its physical
	location. For the security of data.it is necessary to stored encrypted data on clouds.
	Reliability of network resource inside Data center:

	Internal network design of Data Centers (DC) affects the performance and reliability of DC resource
	we can examines the topologies and traffic routing, flow optimizations.
	Internal challenges:
	1. Data locality:
	It is necessary for system to implement data locality. It means combining data (network)
	management, compute (processing) by consuming data locality factors that diminish the amount of
	data moment to improve the performance.
	1. Data aware schedule:
	This gives some answers to questions such as
	 What criteria and polices for moving purpose of data?
	What enforcement made by data integration policies?
	By understanding these challenges, technique improves the performance of data model.2. Analyze the behavior of data:
	To understand the data moment and locality pattern, behavior pf data understanding is a good starting
	point. Visibility:
	Determine origin of the problem is challenge it slows the response. i.e., backup.
Resource Allocation in	Resource allocation is managing and sharing of assists to system and organization. Cloud computing
Cloud Computing [14],	is considered as ear's demand service. It offers guaranteed and reliable services in pay-as -your
2014.	manner. It is very difficult to allocate resources or services accurately to user and satisfy user. It
	provides resources to client. Its aims to provide good and reliable quality services especially to the
	end user. Main objectives of cloud computing are minimum delay, response time, bandwidth in data
	transfer and minimum cost transfer data. With this user get good quality services with an affordable
	cost in business.
An efficient approach for	Data centers basically provide hardware facilities that are configured properly to facilitate users. Data
green cloud computing	centers provides million virtual devices in cloud computing environment but it also addresses some
using genetic algorithm	type of problem that given below:
[15], 2015.	1. Heating problem
	2. Cooling system cost
	3. Power consumption
	Solution:
	Green cloud computing that supports to minimize less power consumption by reducing the use of
	less hardware resources in data center as possible.
	Methodology:
	1. Virtual Machines: Use of virtual machines reduce the usage number of servers.
	2. Power on/off techniques:

	3. Switch idle server on sleep mode.
	 Efficient Resource allocation (pooling mechanism)
	 Enterent Resource anocation (pooning incentainsin) Putting switches, routers, and network interfaces on sleep mode that are not in working state.
	6. Efficient routing mechanism.
	These methodologies are used to prevent following allocation problems:
	1. Resource contention: appears when two different types of applications make a struggle to
	approach same resource with in the same time.
	2. Over-provisioning of resources: occurs when application gets more quantity of resources
	than the desired.
	3. Under-provisioning of resources: occurs when application assigned to resources less than
	the requirement.
Modified Round Robin	Several policies for resource allocation are available in the field of cloud computing environment,
Algorithm for Resource	this paper discusses about the Round Robin Algorithm. It is defined as: a shortest time interval
Allocation in Cloud	specified by scheduler is called a quantum or time-slice. All processes that are in running state kept
Computing [16], 2016.	in a ready queue. In this ready queue, time slice is allocated by the CPU scheduler. Every running
	process executes in this time quantum by processor. If a process is completed in this time-slice and
	terminated otherwise, it added again to the tail of ready queue to be waiting for its next time slice to
	be executed till it completes itself.
	In Cloud Computing (Methodology):
	It is the same as we discuss in general above but a slight difference is time-slice is dynamic. Time-
	slice (quantum): total time of requests dividing by total number of request (jobs) resides in the ready
	queue. It requires two registers: SR: store the remaining rupture time of active jobs in early mentioned
	ready queue. AR: store the average of sum of total burst time dividing by complete jobs in mentioned
	ready queue. Next executing every demand in one time-slice both SR and AR are updating according
	to the new circumstances.
	Guidance: Time-slice should not to be too short or too large.
Optimal Cloud	This research paper is totally about the cost-oriented model that is proposed to efficiently allocate the
Computing Resource	cloud computing resources. DSM it is abbreviation of demand side management so cloud computing
Allocation for Demand	improves the performance of system. There are two algorithms first one is simulated annealing and
Side Management [17],	second one is modified priority list (MPL) both are developed to solve or minimize the optimization
2016.	problems.
	SA:
	It solves difficult combinational and nonlinear problems or solve UC problems in power system.
	MPL:
	It is a time consuming and a modified priority list algorithms that is based on list of priority especially
	designed to solve the problems.
	COM:

ISSN: 2708-7123 | Volume-02, Issue Number-03 | September-2021 LC INTERNATIONAL JOURNAL OF STEM Web: www.lcjstem.com | DOI: https://doi.org/10.47150

	It helps to maintain the effectiveness and produce the	e COM model and reduce the total cost. the main
	purpose of these models to investigate and or descr	ribe the effectiveness of purposed model. we can
	reduce the cost by using these purposed models in	this paper. Upon comparison of both algorithms,
	MPL algorithms can used COM model to work eff	iciently by considering uncertainty or without it.
	Moreover, COM has high potential in the context o	f smart grid.
A Hierarchical	Reinforcement learning method provides the soluti	on of resource allocation in cloud computing by
Framework of Cloud	making automatic decision. Reinforcement learn	ing means taking stable decision to maximize
Resource Allocation and	reward or output in particular situation. resource n	nanagement with deep reinforcement learning is
Power Management	shown in RL automatically allocate and schedule	computer resources to waiting jobs so its main
Using Deep	objective is to minimize job slowdown. So, proje	ect manager knows the importance of resource
Reinforcement Learning	allocation so that he may not make any mistake wh	ile allocating resources. Power consumption has
[18], 2017.	become important aspects in the field of cloud con	mputing because its critical concern is about for
	design that reduces system s reliability and increas	es cooling cost. It slows down or shut down the
	system and affects its performance. DPM (distribution	uted power management) means it allow reduce
	power consumption by power shuts off and on base	ed on cluster utilizations.
Computation Offloading	In this research work a min-max fairness base cost c	conservation algorithm is used to offload resource
and Resource Allocation	allocation by the decision making for problems or	ccurring in Fog or Cloud computing. Allocation
in Mixed Fog/Cloud	becomes optimize in the proposed system by intelligent decision making of bandwidth and power	
Computing Systems with	delay in energy consumption and helps to improve	e energy utilization. In this paper author explain
Min-Max Fairness	s low complexity algorithms and resource allocation algorithms (CORA) and that algorithm solve	
Guarantee [19], 2017.	optimization problems.	
	SDR:	
	It is an abbreviation of Semi Definite Relaxation a	adopted in offloading decision making first time
	that increase the optimization in problem formulat	tion to minimize the weighted cost of delay and
	energy consumption among all user equipment	and focus in queue length and delay of user
	equipment's will be considered their future work.	
Task scheduling and	Scheduling of tasks and allocation of resources a	re two different sides of a single coin that has
resource allocation in	prominent effects on working of each other, discussed in the given table.	
cloud computing using a		
heuristic approach [20],	Task Scheduling (When)	Resource allocation (What)
2018.	A process of assigning specific time interval to	A process of assigning resources to multiple
	perform tasks in a specified assigning so that the	jobs to be executed in an efficient manner
	available resources can be utilized properly.	without idle use of resources.
	Task scheduler:	Resource allocator:
	It is feature that decides that when a process will	It is a feature that explain about the
	gain a resource to be execute and when it will be	availability of resources. Moreover, it
	release it.	allocates the actual resource to a process.

ISSN: 2708-7123 | Volume-02, Issue Number-03 | September-2021 LC INTERNATIONAL JOURNAL OF STEM Web: www.lcjstem.com | DOI: https://doi.org/10.47150

	Scheduler needs to consider following	Resource Allocator consider the followings:
	constraints:	 Demand of resource of a process
		-
	Nature of the taskTask execution time	• Availability of a resource (Status)
	• Task queue	
	Minimize overall response time	Efficient utilization of resources
	Table 3: Scheduling VS Allocation	
Machine Learning Based	In this paper, a machine learning classifier is used to	o analyze and model the multi-dimensional cloud
Resource Allocation of	resource allocation problem. The classifier includes	s two resource allocation algorithms that is based
Cloud Computing in	on logistic regressions and linear approach.	
Auction [21], 2018.	Resource allocation problem in an auction:	
	In the auction mechanism, each user request for a	data set requirement (bid) and after checking the
	requirements data and cost model resources are all	ocated to the intended user. Bidding is based on
	no. of resources required by the user.	
	Multi-dimensional cloud resource allocation alg	orithm based on machine learning:
	The main objective of this algorithm is to select all	user's requirement to solve the given problem by
	optimal allocation solution along optimal price. For	this purpose, it uses logistic and linear regression
	to find the optimal allocation solution, and used	as a learning set for the model that predict all
	requirements of user.	
	Assuming that there are n users submitting resourc	e requirements, because of the limited resources,
	there is a need of an algorithm to allocate resources	
	Linear regression-based resource alloca	ntion prediction algorithm (Linear-ALLOC)
	In this, the number of users those claimed for reso	
	resources wins.	
	Logistic regression-based resource alloc	cation prediction algorithm (Logistic-ALLOC)
	First, mark the winning user as positive and failed	
	plane in high-dimensional space distinct the winnir	
Improving Quality-of-	There is a large pool consist of multiple computers	
Service in Cloud/Fog	the internet. One computer/system access resources	-
Computing through	for the services that they use and do not need for per	
Efficient Resource	reduce the cost for users and known as computin	
Allocation [22], 2019.	important for the efficient resource allocations. Virtual machine placement model aims to minimize	
	the resource allocation cost because with best resource allocation where multiple users' requests for	
	limited resources available at physical level increase	
	efficient resource allocation.	
Efficient dynamic	This paper is suggested the effective dynamic reso	urce that how to allocate to the cloud computing
resource allocation	environment Imitate the interaction between custo	
unocutori		incre and ord r independent tasks are set on the

ISSN: 2708-7123 | Volume-02, Issue Number-03 | September-2021 LC INTERNATIONAL JOURNAL OF STEM Web: www.lcjstem.com | DOI: https://doi.org/10.47150

method for cloud	available work set and virtual machines controls the CPU and RAM resources. The proposed DRA
computing environment	model specifies the key issues in the Spacing Multi-Objective Intelligence Algorithm (S-MOAL) that
[23]. 2020.	is improving. Three experiments were performed and produces good result but the first one is better
	that is S-MOAL, results in terms of cost, expiration date, error, tolerance, and energy consumption
	compared to DSOS PBACO, DCLCA and MOGA algorithms.
	Similarly, the experience of statistics proves the high improvement in the result of an effective
	response regarding the number of DSOS and MOGA algorithms. The virtual machines ongoing
	resource allocation is unused because of S-MOAL algorithm, Although, hunting was better than
	using the peritoneal method because it is safer and thus, get the closest solution of the proposed
	method is also valuable for the resource dynamic human age by adjusting unused VMs, which
	reduces energy. It is very important because this error takes into account the performance of tolerance
	that makes work on cloud computing flawless. In the future perspective the respective are used to
	involve Real Cloud Computing System.
Cloud Computing	In this research paper, there is a network designed to allow sharing of resources and online access to
Virtualization of	Information Technology Services (ITS), data processing tasks and centralized data storage. The
Resources Allocation for	proposed dynamic model of revenue details in cloud computing is a new method that uses VM
Distributed Systems [24],	description for user-based job-based features, which includes virtual resources. The proposed
2020.	approach of this paper describes the algorithm, Ant Colony Optimization (ACO) performing load
	balancing task in cloud computing. The broker is responsible for handling the client's request. The
	cloud then sends the request to the data center and this request is treated by the Data Center Manager
	(DCM) that demands the reservation of specific number of VMs. Moreover, this method of
	computing uses an algorithm called Random algorithm that connects tasks to (cloudlets) and servers
	that allows to handle a large number of tasks at random and distribute the workload to each node.
	Load balancing based on a genetic algorithm hinders resource scheduling in the cloud environment
	comprises of dedicated models to allocate and allocate resources dynamically within the cloud data
	center. The proposed procedure aims to improve response time and delay in cloud service usage by
	distributing VM on server side. Data Center the first algorithm called DSJF is a combination of a
	power management technique called Dynamic voltage and frequency is scaling the Shortest Work
	First (SJF) resource allocation algorithm and Capac Power. The second algorithm, called DFCFS, is
	a combination of a DVFS, first come, first served (FCFS) resource. Cloud computing must be able
	to provide customers services at any time according to their demands. That's why the cloud uses
	virtualization and resource delivery. Techniques for allocating active resources and allowing load
	balancing in the data center. For this purpose, this paper focuses on many resources.
Genetic algorithm	Cloud computing is an emerged field of information technology that is a combination of different
for quality of service-	computing-based resources in the cloud and also provides different types of services to its customers
based resource allocation	(users) like computational power, storage etc. But the major difficulty faced by its customers is the
in cloud computing [25],	selection of the resources for their application deployment with cost effective policy and with best
2021.	quality of service (QoS). This issue causes a big challenge for customers in resource selection. Cloud

service providers offers their services to their customers through "pay-as-you-use" policy. Their
cost and QoS policies are complex regarding resource allocation.
Proposed Algorithm (Genetic algorithm):
In Genetic algorithm, the main components are QoS Performance and Deployment Cost in which
only one service provider is used for both large and small scale of applications. This system gives
the 32% reduction in the deployment cost and 5% in performance. Furthermore, it reduces the
resource rate. For the problem formulation that increases the runtime performance uses directed
acyclic graph in algorithm.
QoS performance:
There are two factors that include database instance response time and computing instance response time for better QoS performance.
(1) The maximum value of response time specified by customer should be less than database instance value.
(2) The maximum value of response time specified by customer should be less than computing instance value.
Cost optimization
The specified algorithm basically focused the best combination of cloud resources.
Therefore, the variables are optimized in cloud resources. Application deployment cost into
the cloud can compute by using following equation.
$\delta = V1 + V2 + V3$
Variable 1: Cost of the data base instance with respect to service time.
Variable 2: Cost of the data base server with respect to service time.
Variable 3: Cost of the Storage server with respect to service time.
Working:
Input: Customer QoS performance requirements.
Step1: Compute Deployment cost.
Step2: Compute database instance response time and computing instance response time.
Output: Suitable Resources Allocation.
This proposed algorithm provides a discrete solution to the resource selection problem to deploy a
customer application in the cloud by efficient balance between the deployment cost and QoS
performance.

III. DISCUSSION

Cloud Computing is considered as the emerging technology using in best business markets and enterprises. A survey shows that resource allocation is the basic essential for providers of cloud deals with greater number of users in less response time. In field of cloud computing, efficient technique is required for resource allocation to users to maximize the user's satisfactions and profit for providers of cloud services.

IV. CONCLUSION

This paper summarizes the algorithms, techniques and methodologies uses in RAS in last decade of era. All service

providers of cloud mainly focused on the resource allocation feature. Henceforth this concerned paper will prove as great motivation for future concerned researchers to grow up with secured and smarter optimal allocation of resources

REFERENCES

- Armbrust, M., et al., A view of cloud computing. Communications of the ACM, 2010. 53(4): p. 50-58.
- Buyya, R., et al., Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems, 2009. 25(6): p. 599-616.
- 3. Mell, P. and T. Grance, *The NIST definition of cloud computing*. 2011.
- Zhang, S., H. Yan, and X. Chen, *Research on key* technologies of cloud computing. Physics Procedia, 2012. 33: p. 1791-1797.
- Zissis, D. and D. Lekkas, Addressing cloud computing security issues. Future Generation computer systems, 2012. 28(3): p. 583-592.
- Pallis, G., Cloud computing: the new frontier of internet computing. IEEE internet computing, 2010.
 14(5): p. 70-73.
- Reddy, V.K., B.T. Rao, and L. Reddy, *Research* issues in cloud computing. Global Journal of Computer Science and Technology, 2011.
- Zhang, L.-J., et al., *Hot topics in cloud computing*. IT professional, 2010. 12(5): p. 17-19.
- Sadashiv, N. and S.D. Kumar. Cluster, grid and cloud computing: A detailed comparison. in 2011 6th International Conference on Computer Science & Education (ICCSE). 2011. IEEE.

framework and algorithms to strengthen the field of cloud computing standard.

ACKNOWLEDGMENT

The people involved in this research are a team of students with a supervisor, they analyze the different algorithms in the form of literature work for new researchers.

- Grossman, R.L., *The case for cloud computing*. IT professional, 2009. 11(2): p. 23-27.
- 11. Kumar, K., et al. *Resource allocation for real-time* tasks using cloud computing. in 2011 proceedings of 20th international conference on computer communications and networks (ICCCN). 2011. IEEE.
- 12. Pawar, C.S. and R.B. Wagh. Priority based dynamic resource allocation in cloud computing. in 2012 International Symposium on Cloud and Services Computing. 2012. IEEE.
- Sharkh, M.A., et al., Resource allocation in a network-based cloud computing environment: design challenges. IEEE Communications Magazine, 2013. 51(11): p. 46-52.
- Sudeepa, R. and H. Guruprasad, *Resource allocation in cloud computing*. International journal of modern communication technologies and research, 2014. 2(4): p. 265808.
- Kaur, B. and A. Kaur. An efficient approach for green cloud computing using genetic algorithm. in 2015 1st International Conference on Next Generation Computing Technologies (NGCT). 2015. IEEE.
- Pradhan, P., P.K. Behera, and B. Ray, *Modified* round robin algorithm for resource allocation in cloud computing. Procedia Computer Science, 2016.
 85: p. 878-890.

- 17. Cao, Z., et al., Optimal cloud computing resource allocation for demand side management in smart grid. IEEE Transactions on Smart Grid, 2016. 8(4): p. 1943-1955.
- 18. Liu, N., et al. A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. in 2017 IEEE 37th international conference on distributed computing systems (ICDCS). 2017. IEEE.
- Du, J., et al., Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Transactions on Communications, 2017. 66(4): p. 1594-1608.
- Gawali, M.B. and S.K. Shinde, *Task scheduling and* resource allocation in cloud computing using a heuristic approach. Journal of Cloud Computing, 2018. 7(1): p. 1-16.
- Zhang, J., et al., Machine learning based resource allocation of cloud computing in auction. Comput. Mater. Continua, 2018. 56(1): p. 123-135.

- Akintoye, S.B. and A. Bagula, *Improving quality-of-service in cloud/fog computing through efficient resource allocation*. Sensors, 2019. 19(6): p. 1267.
- Belgacem, A., et al., *Efficient dynamic resource allocation method for cloud computing environment*. Cluster Computing, 2020. 23(4): p. 2871-2889.
- Shukur, H., et al., *Cloud computing virtualization of resources allocation for distributed systems*. Journal of Applied Science and Technology Trends, 2020. 1(3): p. 98-105.
- 25. Devarasetty, P. and S. Reddy, *Genetic algorithm for quality of service based resource allocation in cloud computing*. Evolutionary Intelligence, 2021. 14(2): p. 381-387.

BIOGRAPHY

MAIRA KHALID received the MCS degree from Bahauddin Zakariya University in 2015, and completed MS Computer Science from Air University in 2018. From 2016 to 2018, she was lecturer of the Computer Science Department in City College of Science and Commerce. Currently, she is working as Lecturer of Computer Science Department in Institute of Southern Punjab and her research includes machine learning, cloud computing, neural network and IoT.

UZMA AZIZ, she is a student of B.S. Information technology, currently working on Final Year Project, in City College of Science and Commerce, Multan, Pakistan. She is interested in research work in flow and storage of data/information throughout the IT infrastructure, resource management, internet of things and machine learning. She worked on cloud computing allocation of resources depending on time, storage capacity, and priority, moreover comparison of previous and modern technology in this research work.

FAIZA LATIF, she is a student of B.S. Information Technology, currently working on Final Year Project, from City College of Science and Commerce, Multan, Pakistan. Her research interests include real Time sentiment Analysis, resource allocation management, and deep Learning. She concludes this research in terms of a last decade survey.

SAMREEN KANWAL, she is a student of B.S. Information Technology, in City College of Science and Commerce and working on Final Year Project. Her research area includes data flow infrastructure, resource allocation management, and deep learning. She worked on allocation of resources in cloud computing depending on user requirement, additionally, analyzing previous and modern technology in this research work.