
ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 6

CREATION OF CFG BASED NATURAL LANGUAGE
FRAMEWORK FOR EXPLICATION OF SYNTAX ERRORS IN
FIRST PROGRAMMING LANGUAGE FEATURING NOVICES

Shafaque Saira Malik1, Shumail Naveed2 & Furqan-ul-haq Siddiqui3

Department of Computer Science and Information Technology,
 University of Baluchistan, Quetta, Pakistan

shafaque.malik@gmail.com, mshumailn@gmail.com

ABSTRACT—The intention of this research is to investigate effectiveness and impact of NLF for error messages on the
performance, motivation, cognitive load of novices in FPL like C. This study analyzed the effectiveness of enhanced error messages
in natural language on debugging .it is used as a teaching tool in introductory programming language. This research focus on use of
natural language framework to illustrate errors, suggest proper solution thus ensures that usability of error messages effectively to
facilitate debugging. This paper reports that self-directed static error resolution and illustration using natural language, enhanced
understanding of static errors and decreased debugging time. CFG based NLF ensemble natural language description underpinning
HCI approach in IDE for resolution of errors. We inferred that novices using NLF performed better in programming with good
understanding of static error handling, error resolution ,NLF has valuable impression on novice learning outcomes The results of
study indicate error messages in natural language augmented static error debugging time which has considerable impact on
performance, motivation, cognitive load of novices.

Keywords—FPL, NLF, novices, CFG, PAT, performance, enhanced error message, motivation, cognitive load.

I. INTRODUCTION

Learning programming is royal pain in neck for novice

programmers. The factors like syntax, error handling and

resolution of errors significantly affect the performance of

novices

II. LITERATURE REVIEW
It is easier to debug errors if novices have clear

understanding of processing steps and outcome of problem

statement (Iqbal & Coldwell, 2017).

(Ovsyannikov, M. K, Kasimov, D. R.,2014; Kuchuganov

2017) concluded that multifaceted development environment

and difficult syntax of the programming language elevate poor

problem analysis and solving abilities for novice as a result of

which novices are less motivated, badly overstrained and fight

tough battle to learn syntax of the programming

language.(Denny et al., 2014) noted that learning syntax of any

programming language is very difficult and introduced

CodeWork incorporating concept of enhance error message to

improve errors messages.

The performance, motivation of novice programmers is

significantly affected due to difficult syntax/semantic of

programming language as a result novice spent their most of

the combating with the grammar of the programming language

and could not develop skills like problem solving (Hooshyar,

Alrashdan & Mikhak, 2015; Hooshyar, Alrashdan & Mikhak,

2017).

Error messages are of prim importance and serve as a tool

for programmers to find and rectify their mistakes in the

programs they coded, and if the errors messages are not helpful

then learning programming becomes hard nut to crack, these

messages are basic source to understand what is wrong in the

program. (Schliep, 2015). Error messages should not

contribute to confusion (Isa et al., 1983). (Marceau et al., 2013)

suggested that complex compiler error messages are difficult

to comprehend by novices and may often lead to wrong path

and thus generate frustration in novice programmers and

greatly hinders their learning ability. (Marchue et al, 2011)

suggested that complex ambiguities in error messages lead to

new errors. Mismatch feedback from compilers upon static

error occurrence often is problematic for novices (Munson &

Schilling, 2016) and these error messages are explanation

where translation broke down, it very difficult to learn.

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 7

If syntactical order of the parser is violated then syntax

errors occurs. Error massages related to syntax are enigmatic

and novices fail to comprehend them, user friendly error

messages provide aid to novices to learn programming

language (Schliep, 2015). Correcting the syntax is the first step

to learn debugging. Compiler error message usability is of

prim importance to diagnose errors, without correcting syntax

errors the process will not proceed and correcting error is

crucial component of debugging process and therefore it

cannot be overlooked (Kummerfield & Kay, 2003).

According to (Marceau et al, 2011) the error messages

received by novices do not directly indicate original error and

they also noted that there are several issues related to

effectiveness of error messages for example error message

does not reflect properly the actual error student have received.

(Traver, 2010) conducted case study on compiler errors

and concluded that error messages are cryptic and

cumbersome to comprehend by novices. Debugging directly

influence performance and motivation of novices. The error

messages do not actually indicate properly cause of error as a

result novice strive hard to respond to these errors messages

and prompt students to inappropriate edicts and cause even

more errors often.

(Schliep, 2015) noted that highlighting of error is

ambiguous; they should be user friendly and in simple

vocabulary rather than compiler jargons, complex terms and

ambiguous sentences.

This research focus on use of natural language to illustrate

errors and suggest proper solution thus ensuring effectiveness

of error message usability to facilitate debugging and thus

ensuring elevated performance of novices. This research will

promote self-directed error resolution and illustration using

natural language; it will also help students to get more

exposure of programming structures and debugging skills, it

can be incorporated in language modeling for error resolution.

It will ensemble natural language description underpinning

human computer interaction (HCI) approach, in IDE for

resolution of errors and is based on augmented context free

grammar (CFG).

This research posits that natural language paradigm is good

feature and can be ensemble in programming. A syntax / error

is core problem for novices and is inherited in programming,

each grammatical rule /syntax can be expressed if not followed

properly in a program in natural language while typing source

code and can be implemented as single unit in Integrated

Development Environment (IDE).

Novices in their first introductory programming course

encounters a lot of mental effort and there is lot of cognitive

load, there is it is very excess cognitive load and ineffective

learning. Pedagogical factors also play important role in

choice of programming language by instruct. Learning

programming languages is very difficult for novices and has

“considerable effect on enrollment and retention for the

programs” (Dann et al, 2006). (Hooshyar et al, Alrashdan &

Mikhak, 2015; Hooshyar, Alrashdan & Mikhak, 2017)

indicated that novices are very frail in problem solving and

analysis and it is very much exaggerated due to complex

environments and syntax of the language and thus introductory

programming language is a hurdle.

Syntax is extravagant twinge in the neck for neophyte

programmers. Problem solving is very difficult and it is

accompanied by new-fangled mode of thinking at the same

time. Many tools are developed to remove syntax for example

Alice and Scratch.

It is considered that the syntax for computer programming

is “austere and stern” since it trails stanch rules that do not

tolerate for maneuver and deviation. The semantic and syntax

error are hectic for an inexperienced person. Debugging,

resolving errors is frustrating for the coder and, for the students,

as a result they may drop the program all together (Porter &

Calder, 2004).

 “Many efforts were depleted in order to make

programming easier in introductory programming courses”

(Anewalt, 2008; Daly, 2011). Students have problems reading,

writing, tracking, designing, debugging simple code segments

(Derus et al., 2012). Many modern IDEs provide support for

learning the language and also syntax through code

completion however there is little support for error resolution

and correction. Debugging is intricate skill for novices.

Complier messages are often scarce and ineduqateand and

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 8

syntax error is cause of disenchantment and barricade to

students triumph (Denny et al, 2014).

(Naved, et al., 2018) introduced the concept of learning

mini language called as LPL(Learners Programming

Language) as a ZPL (Zeroth Programming

Language).Learning mini language is advantageous for

novices before learning introductory programming language

with complex syntax and semantics, it will help novices to

understand syntax of introductory programming language as it

generates high level program equivalently from the source

code in plain natural language and express syntax in the form

of algorithmic way based on the computational statements.

Disparity of errors and indicative messages generated by

compiler is often hard nut to crack and is exacerbated when

same error messages are generated for different errors and

hence complier generate perplexity and ambiguity

accompanied by obscurity to eradicate error and results in de-

motivation, frustration and poor performance of novices.

Recognition and identification of errors cannot be automated.

Repeated errors play role of best indicators for evaluating

students’ progress (Jedud, 2006). Many students are unable to

relate the mistakes highlighted by complier to the mistakes

they have actually have made (Mathew, 1984) .

This research will explore erudition difficulties students’

encounter when studying introductory programming course

and discovering features to develop a natural language error

illustration and resolution tool by incorporating enhance

compiler error messaging technique for novice programmers.

The approaches like “syntax free” “problem solving” and

“computing” were introduced in 1999. ClockIt was developed

by in 2009, and Dr. Racket is also environment to assist novice

programmers. Ratina was developed in 2009 and it focuses on

the errors during compilation and execution. Codework was

developed in 2018, it is “simplified development

environment”, it is web based and provide interface to execute

and review student code. (Kyfonidis et al., 2017) developed

block-based visual shell for C.

This research intent to delineate an appropriate tool which

will serve as platform for on spot syntax error correction and

will suggest on spot resolution of error novice programmers.

If implemented, it will have significantly affected self-efficacy,

motivation and self-learning of novices, condense student

retention /abrasion in computer science, and at the same time

will consequence in amplifying in interest, performance and

programming skills of novice programmers. The intent of this

research is augment compiler error messages with the aid of

on spot natural language illustration of error and simple

suggestion for resolution of errors. Syntax is a magnificent

ache in the neck for neophyte programmers. Leaning syntax is

very difficult for novices. For years a lot of research has been

conducted and many efforts were made to develop tools that

eliminate syntax, most famous Alice and Scratch .Novices in

their first introductory programming course encounters a lot of

mental effort and there is lot of cognitive load, there is excess

cognitive load and ineffective learning .Novices experience

difficulties when learning basic programming concepts in

introductory programming languages reported (Xinogalos et

al ., 2017).Writing code and following the syntax of modern

day popular programming languages is intricate and

convoluted. (Marceau et al., 2011) conducted study and their

finding demonstrated that error messages drastically fail to

convey information accurately to novices.

“Learning to programming languages is very difficult for

novices and it is usually source of anxiety and trouble for many

students enrolled in computer science and has considerable

effect on enlistment and retention for the programs” (Dann,

Cooper, & Pausch, 2006). The researchers conducted over the

period of time indicate that learning first programming course

is intricate, complex for many students (Ali & Shubra, 2010;

Daly, 2011 & Kaplan, 2010).

The semantic and syntax error are hectic for an

inexperienced person. Furthermore, a syntax error reported by

the compiler may be at a location within the program that may

be many lines away from the source of the error .Modern

integrated environments facilitate novices by providing

support for learning language and syntax through code

completion and feeble support for problem solving and

novices feel frustrated and fail to progress. Compiler messages

are less helpful when represented to students and same error

message is generated for different errors, diagnostic errors are

ambiguous and generate confusion and are difficult to resolve

as a result novice are frustrated and demotivated. It is not easy

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 9

to automate identification of errors. When execution and

compilation fail diagnostic errors are generated and

elusiveness exists between errors and diagnostic messages and

most errors generated are syntactical (McCall & Kolling,

2014).

Introductory programming is complex and intricate, and

many efforts over the years were depleted in order to make it

simple to learn and to make introductory programming course

easy for novices (Anewalt, 2008; Daly, 2011). Many new

syntax-free programming languages are introduced, which are

easy to learn for example Alice, Blackly, Bayou, Scratch, and

Tinkle.

Due to difficult syntax, semantic of the language students

are demotivated to learn programming as a result there is high

failure rate, retention and drop out in computer

science .Understanding grammar of any language is extremely

hard for novices, studies show that students have to brawl

syntax understanding combat with high cognitive effort and

load. “Between the system and programmer in any

programming environment, error messages are one of the most

imperative points to contact and students have problems

reading, writing, tracking, designing, and debugging simple

code segments” (Rosminah, MD Derus & Ali, 2012). Many

modern IDEs provide support for learning the language and

syntax through code completion, however there is little

support for error resolution and correction. Student written

code is often filled with errors, and meager debugging skills

escort nuisance and introduction of new error noted by

(Murphy et al., 2008). Error messages are generated by

compiler to help novives to loacte and correct errors,how ever

complier messages are often scarce and ineduqateand and

syntax error is cause of disenchantment and barricade to

students triumph(Denny et al., 2014).

(Koorsse et al., 2015) conducted a survey and concluded

that use of programming assistance tools (PAT) in

environment for teaching programming may allow novices to

be more confident in learning programming. Incongruity of

errors and diagnostic messages is often hard nut to crack and

hence complier error messages generate perplexity and

ambiguity accompanied by obscurity to eradicate error and

results in de-motivation, frustration and poor performance of

novices. “Students expend greater part of their time on

resolving syntax error” (Denny et al., 2014).Repeated errors

play role of best indicators for evaluating students’ progress

(Jedud, 2006).Many students are unable to relate the mistakes

highlighted by complier to the mistakes they have actually

have made (Mathew, 1984),good feedback in the form of error

messages are of prim importance for novice programmers and

are also very crucial for them if they want to learn

programming .Over the years many tools are developed to

resolve the issue and to assist debugging by incorporating

“enhanced error messages” like Bluefix was developed in

2012, an online tool integrated in BlueJ, HelpmeOut

developed in 2010 that assist debugging of error messages by

signifying resolution that peers have applied in the past

however partial assessment was carried out. In 2003 pre-

compiler tool called Expresso was introduced to scan java

programs for 20 frequent errors and prided users with

explanatory messages for errors. It was interactive tool and

provided suggestions to correct the code however its

assessment was left to future work. BACCI is a tool to assist

programming through flowchart description for novices;

Raptor is windows based application to enhance problem

solving skills and avoid syntax errors.(Juded, 2006) perceived

that “ commercial compilers engender uninformative and

sometimes misleading error messages and means of learning

how to deal with them is more effectively needed”. These

messages are snappish and for many novices it is thorny to

write syntactically accurate programs (Ben-Ari, 2015).

Complex error messages are difficult to track. Explicit

programming knowledge and programming proficiency is

required by novice programmers in order to write programs

effectively (Koorsse et al., 2015). For novice programmer’s

inadequate compiler error messages are challenging and are

primary assistance for debugging (Becker, 2016). (Juded,

2005) reported that commercial compilers generate

uninformative and sometimes miss leading error messages.

(Mclver, 2000) reported that novices are frustrated by

unproductive errors and are responsible for not providing

learning opportunities and syntax errors hamper learning as

students are agitated.

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 10

Context-free grammars are associated with linguistics

where they are used to illustrate the structure of sentences,

phrases and words in a language. In computer science they are

used recursively for defining programming language concepts

and syntax and describe structure of the programming

languages. A context-free grammar is based upon a simple,

mathematically precise mechanism for describing how phrases

in language are built and are simple enough to represent

construction of any parser mechanism.

(Rohrmeier et al., 2016) suggested that Context free

grammar (CFG) play very important role for describing syntax

of any programming language and central feature associated

with the words organization, contents of phrases are based on

CFG. The grammar was adapted from (Brian W.& Dennis M.

Ritchie, 1988.) for NLF for elucidation of static errors in

programming language.

III. METHODOLOGY
The main aim of this study was to affirm impact of error

message in natural language frame work(NLF) based on CFG

for static errors in programming on novice performance and

motivation and to investigate response of novices to error

messages in first programming language like C and how this

has profound insinuation on their programming ability and

final scores, along with performance ,diagnosis and resolution

of static errors, impact of error message on novice response

and correction time to static errors, program writing time,

understanding of syntax errors in a better way than

conventional tools used to write programs., glimpse

optimization of diagnostic syntax error time , and influence

of enhanced error message frame work in natural language

and solution to static errors before compilation on

perseverance, perseverance and performance of novice

students and learning has induced high notch of efficiency

and confidence in programming. Ensuring low cognitive load

and elevating interest in learning programing. The participants

were from CS1 who were enrolled in course of “introduction

to programming” and C language as FPL belonged to three

consecutive batches of undergraduates. The total number of

participants was 700 divided into two groups (Conventional

IDEs and NLF group) one group was instructed to use

conventional programming tools and IDES like classical

Turbo C, Code Block, Dev , other group was initially

instructed to use aforementioned tools and then were

switched to tools like GDB, RepelIt, C shell, CPP Check, and

eclipse and later on was instructed to first program in

conventional tool then use visual C and NLF based on CFG.

In each CS1 batch strength of students was 70 except for the

later 3rd batch were strength was reduced to 50 student’s

enrollments due to change in admission policy. In the each

group total number of participants was 70 to 78 out of which

5 to 7 were female novices and rest male and total number of

25 females in total and 5 to 7 females novices in each group

and rest were males, The abettors in two groups were novices

who attempted FPL, enrolled in computer science and

information technology majors, at the university of

Baluchistan during 2016-2017,2017-2018,2018-19 academic

year spanning over two major groups CS and IT. After few

months’ groups were interchanged and performance was

analyses in terms of error handling, writing, compiling,

debugging time of programs ranging from very easy to

difficult programs in C language which helped us to analyze

cognitive load, confidence performance and motivation of

novices. Live data was collected.

Aforementioned tools were used to write programs by the

novices enrolled in CS1 and they were required to use these

tools in their class assignments and programming assignments

where as other group required to work independently alone

on their assignments and in-class practice programs in NLF

based on CFG.

In the conventional IDEs group consortium was done

arbitrarily with keeping in view class performance of novices,

the group included blend of weak, lethargic learners and good

learners with good programming skills. Some of the partners

were changed and reassigned to others and were allowed to

work in collaboration on the basis of demographical factors

like living in dormitory/hostel with same background,

language and remote areas. The novices constantly were

required to stay in the same group throughout the semester.

Data was combined and compared from each group.

Novices were assigned different programming

assignments in-class which they were required to complete

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 11

within class and out-class assignments were required to be

submitted and presented within the period of one week.

Attendance required in all groups was necessary.

Students in both groups were required to submit 15 home

assignments and 10 to 15 in-class practice programming

projects, both types of assignments were given scores for

functionality, rate of error and their correction and error

handling, readability and also time estimated time to write,

execute and debug particular code, debugging time for static

errors was also calculate for each programming task. Novices

were required to submit their error logs in different

programming assignments in all the groups along with the time

scale. Clasp of programming, static error understanding, error

solving knowledge unaccompanied and in groups has deep

impact on

performance,

cognitive load and,

motivation of

novices. Students

working alone and in

conventional groups

were demotivated,

took more time to

write, resolve static

errors, rate of static

typing errors was

high, number of self-

assumed errors was also high furthermore same error

accordance was also high and most of the cases they fail to

understand what actual error was as a result they were

lethargic, bored, fed-up with less self-confidence, high

cognitive stress in the solutions they have developed, most of

the time they were observed besieged with error rectification

and on average spent more time , it has been observed that

conventional IDEs group members were often carped that

they can’t grasp what was taught in class during their projects

on the contrary other using online tool like GDB etc. was little

relaxed but they often had issues with downloading

tool ,understanding error messages, stressful structure, auto

completion of code, it was noticed that when they were asked

to use paper-pen approach to write programs they missed

those structures from that were auto completed like auto

accruing of {} in Code Block. The NLF group however

performed better than the other group in both our CFG based

NLF and Visual C, due proper highlighting of errors and

enhanced error messages and correction suggestion. All

groups were given 15 programs to write, afterwards that 6

programs were given to each group with errors in order to

analyze how much time they take to debag programs, as

expected conventional IDEs group debugging time was longer

than NLF group, however FPL group the error diagnostic time

was least.

Novices despite of the fact submitted and completed their

assignments in FPL in both groups, each one of them

endeavored their terminal exams independently. Terminal and

practical results assess static error handling skills,

programming knowledge, error handling, error understanding,

debugging and capability to response errors in the code and

programs. Data was collected regarding their scores in FPL,

programming time, debugging time, survey was conducted to

analyze their interest in programing, which were later

compared and contrast for each of the groups. The error

messages in classical IDE and NLF are depicted in the

following figures.
 Fig. 2.1 Example of Complex Error Message from Classical C IDE

The fig.2.1 shows complex error messages in classical

Turbo C which are difficult to comprehend and are stated after

compilation for syntax errors e.g. “statement missing “ error

is encountered when ever novice miss terminator at end of the

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 12

statements that is “;” and usually highlight next line which is

wrong highlight and it is often ambiguous for novices to fix

error as a result they fix self-assumed error on next line which

in fact generate another error on compilation , the error

messages are complex as a result novice spend considerable

amount of time to figure out and fix error as a result cognitive

load increase and thus performance and motivation decrease.

Error messages is the only way the novices respond to as

feedback (Munson & Schilling, 2016), which are merely

translation of code in a program by syntax analyzer, no token

is generated by compiler but just a error message if it violates

syntax and after checking syntax tree error is generated , it is

usually in complex format as illustrate in figure 2.1 .The PAT

we developed using CFG frame work generate errors

messages in natural language and on spot for static error, CFG

for this framework is adopted from was adapted from (W.

Kernighan & Dennis M. Ritchie, 1988).

natural language framework for elucidation of static

errors in programming language

illustration of static error in NLF based on CFG

illustrating enhanced error message in natural language along with the

solution

illustration of error and solution in nlf based on cfg

Illustrating enhanced error message in natural language

along with the solution to correct and resolve the error which

is in simple and easy to understand format for novices and a

result they have to spent least time on understanding and

resolving errors

IV. DATA ANALYSIS & RESULTS

Course outline of FPL was same in all the groups.

Hypothesis of this study was set keeping in sight hypothetical

research perspective of novices to succeed. Terminal scores

for all the groups were collected, time consumed to write

program in class and at home was also analyzed for each of

15 programs, debugging time in different tools and NLF based

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 13

on CFG were compared and contrasted to assess our

hypothesis that moot accomplishment and performance and

motivation of novices in FPL is influenced by static errors,

error diagnostic time , and cognitive load of novices is

considerably effected by error messages generated when even

static syntax error encountered.

environments used

The following environments were used for programming

groups of novices in FPL and then they were interchanged

and were required to switch to NLF based on CFG and number

of error fixes on the basis of enhanced error messages in

natural language were analyzed and compared about 80% of

the novices were of the view error messages were in natural

language and easy to understand as compare to other

environments. The IDES/ static code analyzers used by

novices for writing programs are illustrated in figures

Performance in Conventional IDES verses NLF for

elucidation of errors/debugging time

It was suggested by (Teague, D., & Roe, 2008,). that

learning programming is affected by lack of self-assurance,

concentration. We collected data on programming activity

from 760 novices who were enrolled in CS1 and IT in 3

different batches in FPL.The novices used instructional

programming environment called “ NLF for elucidation of

static errors in programming language” deigned based on CFG

is deigned to vindicate static errors and represent error in

natural language along with their solutions. Novices in both

the groups were given 45 programs from easy to complex,

the debugging time required to fix the errors was better in NLF

based on CFG for static errors in programming language, the

average time required to debug single program was calculated

and compared with the debugging time in Conventional

IDEs ,results are illustrated in the following figures

It is inferred from data collected that hypothesis H1 holds

the performance, motivation and retention of novices are

correlated with the induction of natural language in error

resolution. Re-composition of compiler error messages in

natural language has strong association with the performance

of novices. It is very astonishing to infer from results that

students in group NLF performed better as compare to male

/female counterparts in CS1 in convention IDE group. The

time required for each program is on average greater in

Conventional IDE group even for simple programs like

pyramid of stars as compared to NLF. Novices from

aforementioned groups performed better in solo in class for

each of given assignments with less number of errors and time

0

20

40

60

1 3 5 7 9 111315171921232527293133353739414345

Time to debuged in Conventional
IDES verses NLF

Connventional IDE Debug time NLF Debug time

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 14

then novices in the conventional IDE group, however when

they were asked to switch to NLF their performance enhanced

both in grades and in debugging time , their overall debugging

time improved in NLF due easy error messages and solution

suggestions they strive less hard to correct errors than

conventional environments used to write programs in FPL,

performance and motivation was better and ensured deep

learning then surface learning, with high self-efficacy, better

understanding of errors and much improved degree of

perseverance in FPL.

novice debugging time in conventional IDE verses in

FPL Novices were given 45 programs , programs were to be

written, debugged in conventional IDEs like Code Block, Dev,

Turbo C and they were asked to write same programs in NLF,

average time required to debug each program was less in NLF

furthermore over all average debugging time was also less in

NLF as compared to later, results are illustrated in following

figure

The above figures clearly illustrates that novices took less

time to debug in NLF based on CFG as compare to

conventional IDEs with complex error messages. By the

completion of FPL, novices in NLF performed better with

elevated interest. Quality of programs produced by them was

much better, with fewer errors and more readable. Average

number of errors are much less. The T-test conducted on the

performance of subjects shows that there was a significant

difference on the score of conventional groups and NLF

group such that t-value = 1.67 and p < .05. It is concluded

that over all NLF is useful, handy for majority of novices in

CS1 in FPL. Through this research it is certain that natural

language based framework for handling errors in

0

2

4

6

8

10

12

14

convnetional IDE NLF

Average Degugging time to fix static
errors in conventional IDEs verses

NLF

0

5

10

15

20

25

30

35

40

45

50

p1 p4 p7 p10 p13 p16 p19 p22 p25 p28 p31 p34 p37 p40 p43

Connventional IDE Debug time

0

5

10

15

20

25

30

35

p1 p4 p7 p10 p13 p16 p19 p22p25 p28 p31p34 p37 p40 p43 p46

NLF Debug time

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 15

programming is specially advantageous for novice in their

first semester as NLF comprehensively addressed many

considerable facets which deters participation and progress

of novices in computer science and programming .It is

inferred that debugging becomes easy if error messages are

in simple, easy to understand natural language then compiler

jargons will ease leaning of programming with

determination hence ensuring inventiveness, firmness and

effective software development in computer science majors

and encourages novices to trail their potential programming

careers in CS

V. DISCUSSION

The figures are viewed as conceptual framework of this

research. The conceptual frame work of this research is to

ensemble module of natural language as core component for

error illustration and resolution in language modeling, which

will significantly have correlation with performance and

motivation of novice programmers. It is necessary to sure that

the error messages should be novice friendly and represented

in familiar vocabulary or showing hints then compiler jargons,

complex terms and ambiguous sentences and is very

important in designing error messages suggested by (Schliep,

2015). The syntax and semantic of any programming

language have significant effect and the performance and

motivation of students and as a result novice spent their most

of the combating with the grammar of the programming

language and could not develop skills like problem solving

(Hooshyar, Alrashdan and Mikhak ,2013). (Ovsyannikov, M.

K., & Kasimov, D. R. , 2014) concluded that multifaceted

development environment and difficult syntax of the

programming language elevate poor problem analysis and

solving abilities for novice as a result of which novices less

motivated, badly overstrained and continue to study

introductory programming with repugnance and hence fight

tough battle to learn syntax of the programming language.

The framework reflects the blueprint to ensemble

language modeling through natural language error illustrator

and resolver constituent to ease novice programmers for

generating and writing bug free source code by implementing

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 16

approach of enhanced compiler error messages. Figure. 1.1.1

represent conceptual frame work of this research and it is

adapted from (M. Koorsse et al, 2014), snap-shooting code

comprehension which is representing reliance relationship

existing between diverse types of knowledge required by the

neophyte programmer like syntax, programming principles,

programming concept and skills required by novice

programmers. Conceptual scaffold is illustration of language

modeling programming paradigms like object oriented,

imperative, procedural etc. In order to write program/source

code each language is facilitated with blend of editors,

integrated development environment (IDEs), graphical user

interface (GUI). the only way to communicate with the

machine is through compilers, interpreters, assemblers .The

code generation phase is the most difficult and code writing

extremely tricky and difficult as it is followed by complex

language syntax and semantics and require lot of effort to write

simple code accompanied by different types of errors (logical,

semantic and syntax errors). For novice programmers writing

source code and debugging is ordeal. Complex error messages

are difficult to track. Precise programming knowledge and

programming skills are required by novice programmers in

order to write programs effectively (M. Koorsse et al, 2014).

For novice programmer’s inadequate compiler error messages

are challenging and are primary assistance for debugging

(Becker,2016). (Juded, 2005) reported that commercial

compilers generate uninformative and sometimes miss leading

error messages. Tracking errors is extremely hard for novice

programmers. The debugging process and complier messages

are source of high cognitive load, meager performance and

motivation for novice programmers. Syntax understanding is

thorny and solving syntax errors is somewhat very intricate

process in programming. This conceptual model represents

concept of inducing natural language to illustrate and resolve

errors when writing source code, prior to compilation,

conceptual model for my research represent concept of natural

language programming assistance tools (PAT) to make

program writing syntactically error free before compilation.

In 3rd figure conceptual frame work is represented with the

set of independent and dependent variables and hence will

have significant impact on this research. This researcher will

focus on novices enrolled in first semester of computer science

and novice programming is treated as independent variable,

rest of the framework is dependent upon this sole variable.

Novices encounter errors and it is dependent variable, hence

errors messages, errors encountered, error resolution

significantly influence performance of novices therefore errors

are considered independent variable. Performance of novices

is dependent upon errors therefore it is dependent variable.

Performance directly influence motivation to learn

programming, motivation is dependent upon performance and

is dependent variable. Novice programming is influenced by

the errors encountered and resolved, errors have impact on the

performance of novices and performance has impact on

motivation of novices.

variables of study

lists of dependent and independent variables:

hypothesis:

H0:

No co-relation exists between natural language design

and impetus and performance of students/ novice

programmers. Re-composition of compiler error messages by

induction of natural language will have no significant impact

on the performance and motivation of novice programmers in

introductory programming courses.

H1:

The performance, motivation and retention of novices are

correlated with the induction of natural language in error

resolution. Re-composition of compiler error messages in

natural language has strong association with the performance

of novices.

VI. CONCLUSION
The results of this study specify that NLF for elucidation of

errors in programming increase learning and improve

performance and inquisitiveness of novices, and that these

escalations are of prim importance in order to enhance

Independent variables: Dependent variables:

Novice programming Errors

Error Performance

Performance Motivation

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 17

performance and inspiration of novices reliably on fixing static

errors.

NLF is effective tool in learning programming for

novices and increase their skill in programming although and

has profound outcome on the performance of both novices in

FPL.NLF has significant impact on error resolution, diagnosis

of errors, understanding of errors, identifying classes of errors

in programming, effective debugging skills of novices is left

for future work.

ACKNOWLEDGMENT
The authors are obliged to the Department of Computer

science for the benefaction and facility. The authors would

also like to thank all the pupils who contributed in the study.

REFERENCES
[1] Ali, A. &. (2014). Teaching an Introductory

Programming Language. Journal of Information

Technology Education: Innovations in Practice, 13, 57-

67.

[2] Ali, A., & Shubra, C. (2010). Efforts to reverse the trend

of enrollment decline in computer science programs: A

case study. Issues in Informing Science and Information

Technology, 7,209224.

[3] Ali, A., & Smith, D. (2014). Teaching an introductory

programming language in a general education course.

Journal of Information Technology Education:

Innovations in Practice, 13, 57-67.

[4] Agrawal, S. K. (2016). Syntax errors identification from

compiler error messages using ML techniques.

[5] Akcaoglu, M., & Koehler, M. J. (2014). Cognitive

outcomes from the Game-Design and Learning (GDL)

after-school program. Computers & Education, 75, 72-81.

[6] Andrzejewska, M., Stolińska, A., Błasiak, W.,

Pęczkowski, P., Rosiek, R., Rożek, B., ... & Wcisło, D.

(2016). Eye-tracking verification of the strategy used to

analyze algorithms expressed in a flowchart and pseudo

code. Interactive Learning Environments, 24(8), 1981-

1995.

[7] Anderson, J. W., Tataru, P., Staines, J., Hein, J., & Lyngsø,

R. (2012). Evolving stochastic context-free grammars for

RNA secondary structure prediction. BMC

bioinformatics, 13(1), 78.

[8] Bastani, O., Anand, S., & Aiken, A. (2015, January).

Specification inference using context-free language

reachability. In ACM SIGPLAN Notices (Vol. 50, No. 1,

pp. 553-566). ACM.

[9] Benjamin S. Lerner, Matthew Flower, Dan Grossman,

Craig Chambers, Searching for type-error messages,

Proceedings of the 2007 ACM SIGPLAN conference on

Programming language design and implementation, June

10-13, 2007, San Diego, California, USA

[10] Blok, T., & Fehnker, A. (2017). Automated Program

Analysis for Novice Programmers. arXiv preprint

arXiv:1710.00163.

[11] Biggers, M., Brauer, A., & Yilmaz, T. (2008, March).

Student perceptions of computer science: a retention

study comparing graduating seniors with cs leavers. In

ACM SIGCSE Bulletin (Vol. 40, No. 1, pp. 402-406).

ACM.

[12] Brian W. Kernighan and Dennis M. Ritchie (1988),

Section A13 of The C programming language, 2nd edition,

by Prentice Hall.

[13] Bruner J. (1990). "Constructivist Theory." Retrieved 19

July, 2007, from http://tip.psychology.org/bruner.html.

[14] Becker, B. A., Glanville, G., Iwashima, R., McDonnell,

C., Goslin, K., & Mooney, C. (2016). Effective compiler

error message enhancement for novice programming

students. Computer Science Education, 26(2-3), 148-175.

[15] Carter, J., & Jenkins, T. (2002). Gender differences in

programming? Proceedings of the 7th Annual Conference

on Innovation and Technology in Computer Science

Education. Retrieved April 15, 2008 from ACM.

[16] C. Burrell and M. Melchert, "Augmenting compiler error

reporting in the Karel++ microworld," Proceedings of the

Conference of the National Advisory Committee on

Computing Qualifications, 2007, p. 41--46.

[17] Carver, J. C., Henderson, L., He, L., Hodges, J., & Reese,

D. (2007, July). Increased retention of early computer

science and software engineering students using pair

programming. In Software Engineering Education &

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 18

Training, 2007. CSEET'07. 20th Conference on (pp. 115-

122). IEEE.

[18] Choi, H. (2012, August). Learners’ reflections on

computer programming using Scratch: Korean primary

pre-service teachers’ perspective. In 10th International

Conference for Media in Education 2012 (ICoME) (pp.

22-24)

[19] Christian Murphy, Gail Kaiser, Kristin Loveland, Sahar

Hasan, Retina: helping students and instructors based on

observed programming activities, Proceedings of the 40th

ACM technical symposium on Computer science

education, March 04-07, 2009, Chattanooga, TN, USA

[20] Clark, D., MacNish, C. & Royle, G.F (1998). Java as a

teaching language--opportunities, pitfalls and solutions.

The proceedings of the third Australasian conference on

computer science education (July 1998), ACM Press,

173-179.

[21] Cindy Norris, Frank Barry, James B. Fenwick Jr., Kathryn

Reid, Josh Rountree, Clock It: collecting quantitative data

on how beginning software developers really work, ACM

SIGCSE Bulletin, v.40 n.3, September 2008

[22] Cohoon, J. (2006) Just get over it or get on with it:

Retaining women in undergraduate computing. Women

and Information Technology 205--237

[23] Cohen, J. A coefficient of agreement for nominal scales.

Educational and Psychological Measurement, 20(1):37--

46, 1960.

[24] Coull, N.J. SNOOPIE: Development of A Learning

Support Tool for Novice Programmers Within A

Conceptual Framework. PhD Thesis, School of Computer

Science, University of St. Andrews, 2008.

[25] Danial Hooshyar, Moslem Yousefi and Heuiseok Lim, A

systematic review of data-driven approaches in player

modeling of educational games, Artificial Intelligence

Review, (2017)

[26] Dann, W., Copper, S., & Pausch, R. (2006). Learning to

program with Alice. Upper Saddle River, NJ: Prentice

Hall.

[27] Daly, T. (2011, May). Minimizing to maximize: An initial

attempt at teaching introductory programming using

Alice. Journal of Computer Science in Colleges, 26(5),

23-3

[28] Denny et al. (2014). Code write :dupporting students

driven practices of java. ACM , 471-476.

[29] Denny, P., Luxton-Reilly, A., & Carpenter. . (2014).

Enhancing syntax error messages appears ineffectual.

ACM , 273-278.

[30] Denny, P., Luxton-Reilly, A., & Carpenter, D. (2014,

June). Enhancing syntax error messages appears

ineffectual. In Proceedings of the 2014 conference on

Innovation & technology in computer science education

(pp. 273-278). ACM.

[31] de Raadt, M., Watson, R., & Toleman, M. (2003).

Introductory programming languages at Australian

universities at the beginning of the twenty first century.

Journal of Research and Practice in Information

Technology, 35(3), 163.

[32] de Raadt, M., Hamilton, M., Lister, R. F., Tutty, J., Baker,

B., Box, I., ... & Petre, M. (2005). Approaches to learning

in computer programming students and their effect on

success. Research and Development in Higher Education

Series

[33] de Raadt, M., Toleman, M., & Watson, R. (2004).

Training strategic problem solvers. ACM SIGCSE

Bulletin, 36(2), 48-51.

[34] Elliot Soloway , James C. Spohrer , , Novice mistakes: are

the folk wisdoms correct?, Communications of the ACM,

v.29 n.7, p.624-632, July 1986

[35] Engelfriet, J. (2014). Context-free grammars with storage.

arXiv preprint arXiv:1408.0683.

[36] Essi Lahtinen, Kirsti Ala-Mutka, Hannu-Matti Järvinen,

A study of the difficulties of novice programmers,

Proceedings of the 10th annual SIGCSE conference on

Innovation and technology in computer science education,

June 27-29, 2005, Caparica, Portugal

[37] E. Soloway, James C. Spohrer, Studying the Novice

Programmer, L. Erlbaum Associates Inc., Hillsdale, NJ,

1988.

[38] Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., de

Raadt, M., ... & Petre, M. (2006, January). Predictors of

success in a first programming course. In Proceedings of

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 19

the 8th Australasian Conference on Computing

Education-Volume 52 (pp. 189-196). Australian

Computer Society, Inc.

[39] Findler, R. B. (2010). DrRacket: Programming

Environment.

[40] Freeman, S. F., Jaeger, B. K., & Brougham, J. C. (2004).

Pair programming: More learning and less anxiety in a

first programming course. age, 8, 1.

[41] Gordon, V. N., & Steele, G. E. (2003). Undecided first-

year students: A 25-year longitudinal study. Journal of the

First-Year Experience & Students in Transition, 15(1),

19-38Michael de Raadt, R. W. (2002, june). Language

Trends in Introductory Programming Courses. Informing

Science InSITE - “Where Parallels Intersect” June 2002.

[42] Gross, P. A., Herstand, M. S., Hodges, J. W., & Kelleher,

C. L. (2010, February). A code reuse interface for non-

programmer middle school students. In Proceedings of the

15th international conference on Intelligent user

interfaces (pp. 219-228). ACM.

[43] Hagan, D. and Markham, S. Teaching Java with the BlueJ

environment. In Proceedings of Australasian Society for

Computers in Learning in Tertiary Education Conference.

Citeseer, 2000.

[44] Hage, J. and Keeken, P.V. Mining Helium programs with

Neon. In Technical Report, Department of Information

and Computing Sciences, Utrecht

[45] Hooshyar, D., Maíen, T., & Masih, M. (2013). Flowchart-

based programming environments aimed at novices.

International Journal of Innovative Ideas, 13(1), 52-62.

[46] Herbert, C. (2007). An introduction to programming with

Alice. Boston, Massachusetts: Course Technology

[47] Hooshyar, D., Ahmad, R. B., Yousefi, M., Yusop, F. D.,

& Horng, S. J. (2015). A flowchart�based intelligent

tutoring system for improving problem�solving skills of

novice programmers. Journal of Computer Assisted

Learning, 31(4), 345-36.

[48] Iain Milne, Glenn Rowe, Difficulties in Learning and

Teaching Programming—Views of Students and Tutors,

Education and Information Technologies, v.7 n.1, p.55-66,

March 2002

[49] Isong, B. (2014). A Methodology for Teaching Computer

Programming: first year students' perspective.

International Journal of Modern Education and Computer

Science, 6(9), 15.

[50] Isong, I. A., Rao, S. R., Holifield, C., Iannuzzi, D.,

Hanson, E., Ware, J., & Nelson, L. P. (2014). Addressing

dental fear in children with autism spectrum disorders: a

randomized controlled pilot study using electronic screen

media. Clinical pediatrics, 53(3), 230-237.

[51] Isa, B. S., Boyle, J. M., Neal, A. S., & Simons, R. M.

(1983, December). A methodology for objectively

evaluating error messages. In Proceedings of the

SIGCHI conference on Human Factors in Computing

Systems (pp. 68-71). ACM.

[52] Jackson, J., Cobb, M., and Carver, C. Identifying top Java

errors for novice programmers. In Proceedings of the

Frontiers in Education Conference, pages T4C--24. 2005.

[53] Jadud, M.C. A First Look at Novice Compilation

Behaviour Using BlueJ. Computer Science Education,

15(1):25--40, 2005

[54] Munson, J. P., & Zitovsky, J. P. (2018, February). Models

for Early Identification of Struggling Novice

Programmers. In Proceedings of the 49th ACM Technical

Symposium on Computer Science Education (pp. 699-

704). ACM.

[55] J.S. Rey, From Alice to BlueJ: a transition to Java,

Master's thesis, School of Computing, Robert Gordon

University, 2009.

[56] Kamada, M. (2016, November). Islay—An educational

programming tool based on state diagrams. In Advances

in Electrical, Electronic and Systems Engineering

(ICAEES), International Conference on (pp. 230-232).

IEEE.

[57] Kiezun, A., Ganesh, V., Guo, P. J., Hooimeijer, P., &

Ernst, M. D. (2009, July). HAMPI: a solver for string

constraints. In Proceedings of the eighteenth international

symposium on Software testing and analysis (pp. 105-

116). ACM.

[58] Köksal, M.F., Baar, R.E., and Üsküdarl1, S. Screen-

Replay: A Session Recording and Analysis Tool for

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 20

DrScheme. In Proceedings of the Scheme and Functional

Programming Workshop, Technical Report, California

Polytechnic State University, CPSLO-CSC-09-03, pages

103--110. 2009.

[59] Kölling and McCall, D., M. 2014. Meaningful

Categorisation of Novice Programmer Errors. Frontiers in

Education Conference (2014), 2589--2596.

[60] Kummerfeld, S. K., and Kay, J. The neglected battle fields

of syntax errors. In Proceedings of the Fifth Australasian

Conference on Computing Education -Volume 20

(Darlinghurst, Australia, Australia, 2003), ACE ’03,

Australian Computer Society, Inc., pp. 105–111

[61] Kyfonidis, C., Moumoutzis, N., & Christodoulakis, S.

(2017, April). Block-C: a block-based programming

teaching tool to facilitate introductory C programming

courses. In Global Engineering Education Conference

(EDUCON), 2017 IEEE (pp. 570-579). IEEE.

[62] Kyfonidis, C., Moumoutzis, N., & Christodoulakis, S.

(2015). Block-c: A block-based visual environment for

supporting the teaching of c programming language to

novices. Google Scholar.

[63] Laurie Murphy, Gary Lewandowski, Renée McCauley,

Beth Simon, Lynda Thomas, Carol Zander, Debugging:

the good, the bad, and the quirky -- a qualitative analysis

of novices' strategies, Proceedings of the 39th SIGCSE

technical symposium on Computer science education,

March 12-15, 2008, Portland, OR, USA.

[64] M.C. Jadud, "A First Look at Novice Compilation

Behaviour Using BlueJ," Computer Science Education,

vol. 15, Mar. 2005, p. 25--40.

[65] Malik, S. I., & Coldwell-Neilson, J. (2017). A model for

teaching an introductory programming course using

ADRI. Education and Information Technologies, 22(3),

1089-1120.

[66] Marceau, G., Fisler, K., & Krishnamurthi, S. (2011,

October). Mind your language: on novices' interactions

with error messages. In Proceedings of the 10th

SIGPLAN symposium on New ideas, new paradigms, and

reflections on programming and software (pp. 3-18).

ACM.

[67] Marceau, G., Fisler, K., & Krishnamurthi, S. (2011,

March). Measuring the effectiveness of error messages

designed for novice programmers. In Proceedings of the

42nd ACM technical symposium on Computer science

education (pp. 499-504). ACM.

[68] Mendelson, P., Green, T. R. G. and Brna, P. (1990)

Programming languages in education:the search for an

easy start. In J.-M. Hoc, T. R. G. Green, D. Gilmore and

R. Samway(eds) Psychology of Programming, pp. 175–

200, London; Academic Press.

[69] M.M. Ben-Ari, "Compile and Runtime Errors in Java,"

http://stwww.weizmann.ac.il/g-cs/benari/oop/errors.pdf,

accessed June 15, 2010.

[70] Mason, R., & Cooper, G. (2014, January). Introductory

Programming Courses in Australia and New Zealand in

2013-trends and reasons. In Proceedings of the Sixteenth

Australasian Computing Education Conference-Volume

148 (pp. 139-147). Australian Computer Society, Inc.

[71] Matsuzawa, Y., Ohata, T., Sugiura, M., & Sakai, S. (2015,

February). Language migration in non-cs introductory

programming through mutual language translation

environment. In Proceedings of the 46th ACM Technical

Symposium on Computer Science Education (pp. 185-

190). ACM.

[72] Matthew C. Jadud, Methods and tools for exploring

novice compilation behavior, Proceedings of the second

international workshop on Computing education research,

September 09-10, 2006, Canterbury, United Kingdom

[73] Mathew, B. d. (1984). Fatal error in Pass Zero:how not to

confuse novices. Behaviour and Information

Teachnology , 109-118.

[74] . Marie-Hélène Nienaltowski , Michela Pedroni , Bertrand

Meyer, Compiler error messages: what can help novices?,

Proceedings of the 39th SIGCSE technical symposium on

Computer science education, March 12-15, 2008,

Portland, OR, USA

[75] Maria Hristova, Ananya Misra, Megan Rutter, Rebecca

Mercuri, Identifying and correcting Java programming

errors for introductory computer science students,

Proceedings of the 34th SIGCSE technical symposium on

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 21

Computer science education, February 19-23, 2003, Reno,

Navada, USA

[76] Mason, R., & Cooper, G. (2012, January). Why the

bottom 10% just can't do it: mental effort measures and

implication for introductory programming courses. In

Proceedings of the Fourteenth Australasian Computing

Education Conference-Volume 123 (pp. 187-196).

Australian Computer Society, Inc.

[77] Mohamed Shuhidan, S., Hamilton, M., & D'Souza, D.

(2011, June). Understanding novice programmer

difficulties via guided learning. In Proceedings of the 16th

annual joint conference on Innovation and technology in

computer science education (pp. 213-217). ACM.

[78] Montesi, F., Guidi, C., & Zavattaro, G. (2014). Service-

oriented programming with jolie. Web Services

Foundations, 81-107.

[79] Munson, J. P., & Schilling, E. A. (2016). Analyzing

novice programmers' response to compiler error messages.

Journal of Computing Sciences in Colleges, 31(3), 53-61.

[80] Murphy, L., Lewandowski, G., McCauley, R., Simon, B.,

Thomas, L., & Zander, C. (2008). Debugging: the good,

the bad, and the quirky--a qualitative analysis of novices'

strategies. ACM SIGCSE Bulletin, 40(1), 163-167.

[81] Nakamura, S., Nozaki, K., Morimoto, Y., & Miyadera, Y.

(2014, September). Sequential pattern mining method for

analysis of programming learning history based on the

learning process. In Education Technologies and

Computers (ICETC), 2014 The International Conference

on (pp. 55-60). IEEE

[82] Naveed, S., Sarim, M., & Nadeem, A. (2018). C in CS1:

Snags and viable solution. Mehran University Research

Journal of Engineering & Technology, 37(1), 1.

[83] Naveed, M. S., Sarim, M., & Ahsan, K. (2016). Learners

programming language a helping system for introductory

programming courses. Mehran University Research

Journal of Engineering & Technology, 35(3), 347.

[84] Naveed, M. S., Sarim, M., & Nadeem, A. Making C a

Primary Language for the First Programming Course.

[85] Nelson Laird, T. F., & Garver, A. K. (2010). The effect of

teaching general education courses on deep approaches to

learning: How disciplinary context matters. Research in

Higher Education, 51(3), 248-265.doi:10.1007/s11162-

009-9154-7

[86] N.J. Coull, SNOOPIE: development of a learning support

tool for novice programmers within a conceptual

framework, PhD Thesis, School of Computer Science,

University of St. Andrews, 2008.

[87] N. Wirth, "The Programming Language Pascal," Acta

Informatica, vol. 1, 1971, pp. 35-63.

[88] Ovsyannikov, M. K., & Kasimov, D. R. (2014). Editor and

Interpreter of Program Flowcharts for Distance Learning

Programming. Bulletin of Kalashnikov ISTU, (3), 154-156.

[89] Ozoran, D., Cagiltay, N., & Topalli, D. (2012). Using

scratch in introduction to programming course for

engineering students. In 2nd International Engineering

Education Conference (IEEC2012) (pp. 125-132).

[90] Paul Gross, Kris Powers, Evaluating assessments of

novice programming environments, Proceedings of the

first international workshop on Computing education

research, p.99-110, October 01-02, 2005, Seattle, WA,

USA University.

[91] Pham, B. (1996). The changing curriculum of computing

and information technology in Australia. Proceedings of

the second Australasian conference on computer science

education (July 1996), ACM Press, 149-154.

[92] Piteira, M., & Costa, C. (2013, July). Learning computer

programming: study of difficulties in learning

programming. In Proceedings of the 2013 International

Conference on Information Systems and Design of

Communication (pp. 75-80). ACM.

[93] Piteira, M., & Costa, C. (2012, June). Computer

programming and novice programmers. In Proceedings of

the Workshop on Information Systems and Design of

Communication (pp. 51-53). ACM.

[94] Porter, R., & Calder, P. (2004). Patterns in learning to

program: an experiment? Proceedings of the Sixth

Conference on Australasian Computing Education –

Volume 30, 241 -246. Retrieved April 18, 2008 from

ACM.

[95] Powers, K., Ecott, S., & Hirshfield, L. (2007). Through

the looking glass: Teaching CS0 with Alice. ACM

ISSN: 2708-7123 | Volume-01, Issue Number-02 | June-2020
LC INTERNATIONAL JOURNAL OF STEM

 Web: www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Published By: Logical Creations Education and Research Institute (www.logicalcreations.org) 22

SIGCSE Bulletin, 39(1), 213-217. Retrieved March 28,

2008 from ACM.

[96] Raina Mason and Simon the 20th Australasian Computing

Education Conference ACE '18 Brisbane, Queensland,

Australia Proceedings of the 20th Australasian

Computing Education Conference on - ACE '18 ACM

Press New York, New York, USA, (2018).

[97] Rohrmeier, M., Fu, Q., & Dienes, Z. (2012). Implicit

learning of recursive context-free grammars. PloS one,

7(10), e45885.

[98] Robert Bruce Findler, John Clements, Cormac Flanagan,

Matthew Flatt, Shriram Krishnamurthi, Paul Steckler,

Matthias Felleisen, DrScheme: a programming

environment for Scheme, Journal of Functional

Programming, v.12 n.2, p.159-182, March 2002

[99] Robins A, Rountree J, et al. (2003). "Learning and

Teaching Programming: A Review and Discussion."

Journal of Computer Science Education 13(2): 137--172

[100] Schliep, P. A. (2015). Usability of Error Messages for

Introductory Students. Scholarly Horizons: University of

Minnesota, Morris Undergraduate Journal, 2(2), 5.

[101] Shapiro, R. B., & Ahrens, M. (2016). Beyond blocks:

Syntax and semantics. Communications of the ACM,

59(5), 39-41.

[102] Seymour, E. and Hewitt, N. (1997). Talking about leaving:

Why undergraduates leave the sciences. Boulder, CO:

Westview PressRonit Ben-Bassat Levy , Mordechai Ben-

Ari , Pekka A. Uronen, The Jeliot 2000 program

animation system, Computers & Education, v.40 n.1, p.1-

15, January 2003 .

[103] Singh, R., Gulwani, S., & Solar-Lezama, A. (2013).

Automated feedback generation for introductory

programming assignments. ACM SIGPLAN Notices,

48(6), 15-26.

[104] Smith, G., & Fidge, C. (2008, January). On the efficacy

of prerecorded lectures for teaching introductory

programming. In Proceedings of the tenth conference on

Australasian computing education-Volume 78 (pp. 129-

136). Australian Computer Society, Inc.

[105] Striewe, M., & Goedicke, M. (2014, June). A review of

static analysis approaches for programming exercises. In

International Computer Assisted Assessment Conference

(pp. 100-113). Springer, Cham.

[106] Taheri, S. M., Sasaki, M., & Ngetha, H. T. (2015, July).

Evaluating the effectiveness of problem-solving

techniques and tools in programming. In Science and

Information Conference (SAI), 2015 (pp. 928-932). IEEE.

Teague, D., & Roe, P. (2008, January). Collaborative learning:

