
ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Programmer Assisted Tool Impact on Static Error Handling
Capability of Novices in Imperative First Programming Languages

ShafaqueSaira Malik1, Muhammad Shumail Naveed1, Furqan-ul-Haq Siddiqui1, Attiq Ahmed1,Ehsan Ullah1
1Department of Computer Science and Information Technology, University of Baluchistan, Quetta, Pakistan.

ABSTRACT—Learning and understanding the syntax of a programming language is an extremely ordeal for novice
programmers majoring in computer science. Introduction to programming is offered as a core subject. Novices have to use IDEs
to write their programs. These IDEs has a valuable impression of novice error handling skills as static error messages are
represented as intricate compiler waffles, terms and puzzling sentences. Docile, easy to understand, simple error messages are of
prissy importance to evaluate novice programming aptitude. This research represents the outcomes of programmer assisted tool in
natural language for explication of static errors in an imperative first programming language like C. Programmer Assistant tool
(PAT) represents natural language description/solution of static errors underpinning Human Computer Interaction (HCI) approach,
in the IDE and work as an offline static code analyzer. To assess effectiveness of this PAT novices was directed to write programs
in different IDEs first and later using this PAT. Frequency of static errors, error, problem-solving time was analyzed and
compared. The result of this study depicts that use of the programmer assisted tool has deep impact on novice performance,
motivation and learning outcome. The quantitative mathematical analysis of our study revealed programming assistant tools has
significantly influenced programming and static error handling skills of the students majoring CS.

Keywords—First programming Language (FPL), Natural Language Framework (NLF), Novices, Error Message (EM),

Programmer Assistant Tool (PAT)

I. INTRODUCTION
Syntax is a splendid annoyance for apprentice programmers.

Learning programming language syntax is very problematic

for novices and syntax of a programming language is the

only hindrance to their best performance. Error messages

related to the syntax are inscrutable and apprentices flop to

grasp them. The factors like syntax, error handling and

tenacity of errors dramatically disrupt the performance of

novices. The syntax and semantic of any programming

language have significant upshot on the performance,

enthusiasm of pupils and as a result, novice disbursed their

most of the time struggling with the grammar of the

programming language and could not develop skills like

problem resolution (Hooshyar et al. 2015). Self-directed error

handling approach to resolve and illustrate static errors

enhance better understanding of static errors in first

programming language like C, study conducted by (Malik,

Naveed, and Siddiqui 2020) indicates that error messages in

natural language improved static error correcting time which

has substantial influence on performance, enthusiasm, mental

load of apprentices. If the error message is convoluted and

difficult then it will not be comprehensible by novices and

may often lead to erroneous track and thus engender

hindrance in novice programmers and significantly hampers

their learning aptitude and recommended that intricate

obscurities in error messages lead to new errors(Marceau and

Fisler 2009). A case study was conducted on compiler

errors by (Traver 2010) and concluded that error messages

are puzzling and obstinate to comprehend by novices.

Debugging unswervingly impact performance and inspiration

of novices. The error messages do not essentially specify the

appropriately cause of the error as a consequence novice

attempt hard to retort to these error messages and they often

prompt pupils to inapt edicts and cause even more errors

often. It was noted by (Schliep 2015) that prominence of

error cause uncertainty and corresponds to uncertain location

and recommended that error messages should be novice

amicable and embodied in conversant vocabulary rather than

compiler waffles, intricate terms and inexact sentences. This

PAT was developed to facilitate novices in programming.

Natural language based error descriptions can assist novice

programmers to better understand and remove errors in their

programs before compilation has deep impact on learning

outcomes of novices in a first programming language like C,

this case study was conducted on students enrolled in CS

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

(Malik, Naveed, Siddiqui, et al. 2020). Most of the tools with

enhanced error messages are developed online and mostly for

java programming and not for imperative programming

languages like C and most of the available static code

analyzers are online like RepelIT, CShell, GDB, Clang. The

prime input of this work is the analysis of paraphernalia on

novices in imperatives first programming language like C by

facilitating them with PAT, serving as an offline static code

analyzer espousing natural language framework for

description and resolution of static errors in natural language.

Error messages in this framework are user sociable with

meek vocabulary rather than compiler jargons, intricate terms

and abstruse sentences. It is used as a coaching tool in the

initial programming course to endorse surface and deep

learning in novices through resolution of static errors former

to compilation. The purposes of this PAT are to condense

cognitive load to detect errors while writing code to solve

programming problems thus promoting self-directed error

resolution, self-efficacy, and self-learning of novices,

abbreviate student preservation /abrasion in computer science,

and at the same time will consequence in amplifying in

interest, performance and programming skills of novice

programmers.

II. LITERATURE REVIEW
Novices in their first introductory programming course

encounter a mental effort and cognitive load. Learning

programming languages is very difficult for most of the

students and has considerable impact on enrollment and

retention (Cooper, Dann, and Pausch 2003).Malik, Naveed,

and Siddiqui (2020) conducted a case study on the students

enrolled in CS and concluded that novice spent considerable

amount of time to locate, fix static errors in their early

programs.Novice programmers must deal with delusions,

debugging, problem-solving and they often face coding

misconceptions a due to lack of knowledge or simply

incorrect assumption (Algaraibeh, Dousay, and Jeffery

2020). Novices are very frail in problem solving and analysis

and it is very much exaggerated due to complex

environments and syntax of the language and thus

introductory programming language is a hurdle, the syntax

and semantic of any programming language has significant

effect on the performance and motivation of students and as

a result novices spent their most of the combating with the

grammar of the programming language and could not

develop skills like problem solving (Hooshyar et al., 2013).

Over the year’s efforts were made to remove syntax and

many tools are developed to achieve like Alice and Scratch.

It is considered that the syntax of computer programming is

“austere and stern” since it trails stanch rules that do not

tolerate for maneuver and deviation. The semantics and

syntax error are hectic for an inexperienced person. It has

been observed that syntax error reported by the compiler at a

location within the program is many lines away from the

source of the error as a result novice faces high altitude of

discomfort and cognitive effort and cognitive load. This is

frustrating for the coder and, for the students, as a result, they

may drop the program all together(Porter and Calder 2004).

The most vital points of contact between the system and

programmer in programming environment are the error

messages. Students have problems reading, writing, tracking,

designing, debugging simple code segments (Siti Rosminah

and Ahmad Zamzuri 2012).Insufficient debugging skills aide

nuisance and introduction of new error.Naveed,

Sarim&Nadeem (2018) introduced the concept of learning

mini language before learning introductory programming

language with complex syntax and semantics and was called

as LPL (Learners Programming Language) as a ZPL (Zeroth

Programming Language). Inconsistency of errors and

symptomatic messages generated by compiler is often hard

nut to crack and is worsened when same error messages are

generated for different errors and hence complier generate

confusion and uncertainty accompanied by

inconspicuousness to remove error and results in de-

motivation, frustration and poor performance of novices.

Encountering the same compiler error iteratively

consecutively is tough majority of the students spend

majority of their time on the understanding of error and

hence they have to spend extra time on resolving syntax

errors (Denny, Luxton-Reilly, and Carpenter 2014).Over the

years many tools are developed to resolve the issue and to

assist

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

debugging by integrating enhanced error messages.

M.Koorsse et al (2015) conducted a survey and concluded

that use of programming assistance tools (PAT) in

environment for teaching programming may allow novices to

be more confident in learning programming. Compiler error

messages are snappy and for many novices, it is hard to write

syntactically accurate programs (Ben-ari 2007). For novice

programmer’s scarce compiler error messages are

challenging and are main assistance for debugging (Karvelas,

Dillane, and Becker 2020). Juded (2005) reported that

commercial compilers generate uninformative and sometimes

miss leading error messages. Description of static errors has

considerable impact on the novice performance (Malik,

Naveed, and Siddiqui 2020).

III. METHODOLOGY
The data related to syntax error encountered by

novices was collected in programming classes. Frequency of

most common errors was calculated. Most frequent static

syntax errors encountered by novices during their

programming assignments along with their frequency are

displayed in the table 4.1.

Table 4.1. Frequency of Errors in Programming

Assignments

Evaluation

The evaluation of PAT was done by implementing it among

novice groups “treatment group” along with “control group”

using Turbo C IDE. Time was recorded from the error logs

maintained in PAT and also manually novices were required

to note time for writing programs in Turbo C, then both were

compared.

Syntax Errors

Number of

Times

Occurrence Frequency

; missing 185 7.80%

undefined symbol 176 8.40%

} Missing 44 4.30%

) Expected 82 4.90%

Return missing 48 2.39%

Incorrect declaration of variable 86 4.89%

Method not defined 43 4.20%

(Expected 44 4.60%

<Identifier expected 43 4.49%

Uninitialized variable 30 2.34%

Undeclared variable 44 6.81%

Illegal start of expression 44 6.32%

Parameter type mismatch 45 4.03%

If (a<b); 46 2.20%

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Table 4.2 Most Frequent Static Syntax Errors and Simple

Error Messages in PAT

The study was conducted on novices in imperatives first

programming language like C by applying PAT and

analyzing its impact on the performance, motivation,

cognitive load, debugging time. Error messages in this

framework are user friendly with simple vocabulary rather

than compiler jargons, complex terms and ambiguous

sentences. This framework has been used as a teaching tool

in an introductory programming course. This paper

represents investigations related to the effectiveness of this

model, facilitating novice debugging, promoting self-directed

static error resolution. The benchmark used to measure

novice performance is error diagnostic time, number of errors,

error resolution time. It is inferred that if error diagnostic

time, increase performance will decrease and vice versa.

Performance is inclusively related to the time required to

write the programs and it is influenced by static error

description. It was observed that increase in error resolution

time decreased performance on the contrary fast correction of

static errors, reduces over all static error diagnosis time

subsequently increasing performance and motivation. We

inferred that performance is mutually exclusively related to

static error diagnostic time. We calculated frequency of static

errors and their debugging time in 45 different programs

assigned to novices in both PAT and Turbo C. We calculated

error frequency and time to write the program. The errors

occurred was maintained in error logs for each programming

assignment, later groups were interchanged to evaluate their

performance. Most common errors and enhanced error

messages for them are listed in the table 4.2 that PAT

addresses.

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Conceptu

al

Error Description Error message

; Missing terminator

at the end of the

statement

The put semicolon '; ' in the end of statement to remove the error"

>)} Missing closing or

opening braces

Put '} ' in the end of statement to remove the error"

 Put “{“to remove the error

Printf

Print

Print

P of ptintf in

uppercase

Missing f from print

statement

 Write printf in the place of print to remove the error

 Write lowercase ' p ' in Printf to remove the error

 Undefined variable

 Undefined symbol

Incorrect declaration of

variable

Undefined variable  The variable is not defined please define it or check the

spelling

Initialize int from char Wrong initialization  Assign Integer Value or Change int to char to remove

the error"

) Expected

Missing parenthesis  Put ') ' at the end of statement to remove the error

(Expected

Missing parenthesis  Put “(“at the beginning of statement to remove the error

<Identifier expected Identifier not

defined/ missing

 Place identifier/ variable

 The variable is missing in the statement either declare

missing identifier /variable

Uninitialized b=variable The variable has not

been initialized
 Please assign value to variable to remove the error

Method not defined

  Correct the spelling

Define header file at the beginning of your program

#include<stdio.h or conio.h>

Return missing

Return statement

missing

 Make function void if not returning or passing any value

For example, void main (void)

 Type “return ()”; before closing}

Illegal start of expression Start expression by using“_” underscore Or by using any letter

remove numbers, special characters and predefined symbols to

remove the error

Parameter type mismatch

 Change the type and of parameter in the function to remove the

error

If (a<b); Remove error by removing terminator semicolon “;” at the end

of if statement

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Framework For PAT

Performance of novices is dependent upon errors.

Performance directly influence motivation to learn

programming, motivation is dependent upon performance.

Novice programming is influenced by the errors encountered

and resolved, errors have an impact on the performance of

novices and performance has impact on the motivation of

novices. Performance of novices is dependent upon errors.

Performance directly influence motivation to learn

programming, motivation is dependent upon performance.

Novice programming is influenced by the errors encountered

and resolved, errors have an impact on the performance of

novices and performance has impact on the motivation of

novices. Fig 4.3 Illustrating conceptual framework for PAT

augmented with enhanced error message in natural language

along with the solution to correct and resolve the error which

is in simple and easy to understand format for novices and a

result they have to spend less time on understanding and

resolving errors.

Fig 4.3 Conceptual Framework for PAT

The main aim of this study was to affirm impact of error

message in simple natural language on novice programmers

and to investigate response of novices to error messages in

imperative first programming language like C and how this

has profound insinuation on their programming ability and

final scores, along with performance, diagnosis and

resolution of static errors, impact of error message on

novice response and correction time to static errors,

program writing time, understanding of syntax errors in a

better way than conventional tools used to write programs

and influence of enhanced error message framework in

natural language and solution to static errors before

compilation on perseverance, performance of novice

students and learning has induced high notch of efficiency

and confidence in programming ; ensuring low cognitive load

and elevating interest in learning programing. The novices

were given 45 programs ranging from simple to complex and

were divided into two groups, they were required to write

programs individually and later in groups. Novices were

instructed to note down the number of errors they

encountered in individual programs along with total time

they required to write, debug, run their programs. The

abettors in two groups were novices who attempted FPL like

C, enrolled in computer science majors. Novices were

divided into two groups control and treatment groups. They

Control groups was instructed to use turbo C and the

treatment group was instructed to use PAT. After few months’

groups were interchanged. Live data were collected. Novices

were required to use these tools in their class assignments

and programming assignments.

 In the control group, grouping was done randomly

with keeping in view class performance of novices, the group

included blends of weak, lethargic learners and good learners

with good programming skills. Some of the partners were

changed and reassigned to others and were allowed to work

in collaboration on the basis of demographic factors like

living in a dormitory / hostel with the same background,

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

language and remote areas. The novices constantly were

required to stay in the same group throughout the semester.

Data was combined and compared from each group. Novices

were assigned different programming assignments in-class

which they were required to complete within class and out-

class assignments were required to be submitted and

presented within the period of one week. Attendance required

in all groups was necessary.

Students in both groups were required to submit 15

home assignments and 10 to 15 in-class practice

programming projects, both types of assignments were given

scores for functionality, rate of error and their correction and

error handling, readability and time estimated time to write,

execute and debug particular code, debugging time for static

errors was also calculate for each programming task. Novices

were required to submit their error logs in different

programming assignments in both the. Static syntax error

understanding, error solving knowledge has deep impact on

performance, cognitive load and motivation of novices. It

was observed that novices working in control groups took

more time to write, resolve static errors and rate of static

typing errors was high, number of self-assumed errors was

also high furthermore same error occurrence was also high

and more oftenly they fail to understand what actual error

was as a result they were lethargic, bored, fed-up with less

self-confidence, high cognitive stress in the solutions they

have developed, most of the time they were observed

besieged with error rectification and on average spent more

time. It was observed that control group members were often

carped that they can’t grasp what was taught in class during

their projects on the contrary treatment group, however

performed better than due to proper highlighting of errors,

simple error messages and correction suggestion. Both

groups were given 15 programs to write, afterwards that 6

programs were given to each group with errors in order to

analyze how much time they take to debug programs, as

expected control group debugging time was longer than the

treatment group. Novices submitted and completed their

assignments in both groups. Novices attempted their terminal

exams independently. Data was collected regarding their

scores in FPL, programming time, debugging time.

.

IV. DATA ANALYSIS& RESULTS
Theresults of this study show that while at first, the novices

struggle with syntax which is is typical with learning a new

language. Course outline of FPL was same in all the groups.

Supposition of this study was set keeping in sight

hypothetical research perspective of novices to succeed.

Terminal scores of all the groups were collected, the time

consumed to write program in class and at home was

analyzed, debugging time in both groups was compared and

contrasted to assess our supposition that accomplishment and

performance of novices in FPL is influenced by static errors,

error diagnostic time. The cognitive load of novices is

considerably affected by error messages generated whenever

a static syntax error encountered. The table 5.1. Depicts total

number of novices in

both groups, female participants, the number of dropouts,

table 5.2. Depicts average scores in both groups

Table 5.2 Average Score in FPL

Novices Enrolled in FPL
Control Group PAT Group

Total number of novices = 59 Total number of
novices =54

Total number of dropouts=8 The total number of
dropouts=14

Total number of males=51 Total number of
males=48

Total number of females=8 Total number of
females=6

Table 5.1 Novices enrolled in FPL

Performance in terms of Debugging Time

It was suggested by (Donna Teague and Paul Roe 2008) that

learning programming is affected by lack of self-assurance,

concentration. We collected data on programming activity

from. Novices in both the groups were given 45 programs

from easy to complex. The average time required to debug a

Novices Average Scores in FPL

Control Group PAT Group

56.81632653 79.55556

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

single program was calculated and compared in both the

groups and it is depicted in table 5.3

Novice, Average Debugging Time in FPL
Control Group Treatment Group

13.31295 minutes 12.91556 minutes
Table 5.3 Average Debugging Time

Re-composition of compiler error messages in natural

language has a strong association with the performance of

novices. It is very astonishing to infer from results that

students in the treatment group performed better as compared

to male /female counterparts in the control group. The time

required for each program is on the average greater in control

group even for simple programs like a pyramid of stars as

compared to the treatment group. Novices from

aforementioned groups performed better in solo in class for

each of given assignments with a smaller number of errors

and time then novices in the control group, however when

they were asked to switch to PAT their performance

enhanced both in grades and in debugging time, their overall

debugging time improved in PAT due easy error messages

and solution suggestions. They strive less hard to correct

errors. The average time required to debug each program was

less in the treatment group furthermore overall average

debugging time, the average time required to write, compile,

debug programs and total number of the overall error count

was also less in the PAT as compared to control group,

results are illustrated in following table 5.4

 Control Group Treatment Group
Average Debugging Time to Fix
Static Errors

13.58 Minutes 10.46 Minutes

Average to Write, Compile, and
Debug Programs

14.7 Minutes 12.8 Minutes

The total number of static errors
Fixed

3875 2819

Table 5.4 Average Debugging Time and Total Count of errors in 10 Lectures

The benchmark used to measure novice performance is error

diagnostic time, number of errors, error resolution time as

depicted in table 5.4. It is inferred that if error diagnostic time,

increase performance will decrease and vice versa.

Performance is inclusively related to the time required to

write the programs and it is influenced by description of

static error. It was observed that increase in error resolution

time decreased performance on the contrary fast correction of

static errors, reduces over all static error diagnosis time

subsequently increasing performance and motivation. We

inferred that performance is mutually exclusively related to

static error diagnostic time and outcomes of the study are

also reflected in the Fig 5.1, 5.2, and 5.3

Fig 5.1 Time To Debug Programs In Control Group Using Conventional IDE Like Turbo C And Control Group Using

NLF Based PAT

0
10
20
30
40
50

0 5 10 15 20 25 30 35 40 45 50

Time To Debuged In Control Verses Treatment Group

Connventional IDE Debug time NLF Debug time

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Fig 5.2 Control Group Debug TimeFig 5.3 Treatment Group Debug Time

The fig 5.1 and fig 5.3 clearly illustrates that novices took

less time to debug in the NLF PAT as compared to

conventional IDE with complex error messages. By the

completion of FPL, novices in treatment group performed

better with elevated

interest. Quality of programs produced by them was much

better, with fewer errors and more readable. The fig 5.4 and

5.5 represent frequency of errors novices encountered during

the semester in 10 lectures in FPL.

Fig 5.4 Frequency of Errors in Control Group

0
10
20
30
40
50

0 10 20 30 40 50

Control Group Debug time

0

10

20

30

40

0 10 20 30 40 50

Treatment Group Debug time

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

Frequency of Errors in Different Programming Projeects in Control Group

0
2
4
6
8

10
12
14
16
18
20

0 5 10 15 20 25 30 35

Frequency of Errors in Different Programming Projects in Treatment Group

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Fig 5.5 Frequency of errors in treatment group

Static syntax errors
Control Group average

weightage of error Treatment Group Average Weightage of Error
; missing 11.63870968 12.45122384
undefined symbol 10.60645161 7.484923732
}missing 9.677419355 10.64207166
) expected 8.980645161 9.08123448
return missing 7.535483871 6.385242994
incorrect declaration
of variable 8.103225806 5.285562256
method not defined 7.535483871 4.398722951
(expected 5.987096774 4.753458673
<identifier expected 3.561290323 4.895352962
uninitialized
variable 7.587096774 9.223128769
undeclared variable 4.516129032 6.207875133
illegal start of
expression 4.903225806 6.775452288
parameter type
mismatch 4.95483871 6.881873005
if(a<b); 4.387096774 5.853139411

Table 5.5 Weightage Frequency of Errors

Frequency of error occurrence is less in different

programming projects less in treatment group using PAT as

compared to control group as depicted in the fig 5.3 and 5.4.

We conducted pre-test to check the performance of novice

in programming skills along with their age. T-test conducted

on age shows that there was no significance in the age of

both the groups. The t-value is -0.7 and the p-value is .22.

The result is not significant at p < .05. The group sampling

for equivalence was done on the basis of academics and age.

Both the samples were divided into two groups. The

academic performance level was analyzed on the basis of

programming algorithmic skills and mathematical skills in

the pre-test. The T-test conducted on the performance of

subjects shows that there was a significant difference on the

score of the control group and treatment group such that t-

value = 1.67 and p < .05. It is concluded that over all PAT is

useful, handy for the majority of novices. Through this

research it is certain that PAT augmented with natural

language-based enhanced error message for handling static

syntax errors in programming is especially advantageous for

novice in CS1 as it comprehensively addressed many

considerable surfaces which prevents participation and

progress of novices in computer science and programming. It

is inferred that debugging becomes easy if error messages are

in simple, easy to understand natural language then compiler

jargons. Learning to program with determination is promoted

hence ensuring inventiveness, firmness and effective

software development in computer science majors and

encourages novices to trail their potential programming

careers in CS.

V. CONCLUSION
The results of this study specify that PAT used as a

programming tool increase learning and improve

performance and inquisitiveness of novices, and that this is

of prim importance in order to enhance performance and

inspiration of novices reliably on fixing static errors. We

assume that PAT will benefit students to develop potential

skills to overcome barriers in their first programming

language course. It is inferred from results that understanding

of error messages to resolve static errors plays a very

imperative part in an engaging, indorsing, nourishing

curiosity, enthusiasm of novices whether male or female in

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

learning. Programming and hence safeguarding real progress

of programming and auspicious future in computer science.

The results of this study provide real indication that

syntax errors handling in the programs effects performance

of novices in their first programming course effectually

and later on it will play significant role in future

programming-oriented subjects and has profound influence

on novice performance and is one of most effective

pedagogical tools

that has deep impact and effect on the learning capability

and performance of novices in CS1. Novices who were

using PAT showed high competence in programming with

a high notch of error resolution, good problem solving and

produces better quality programs then others.

PAT is an effective tool in learning programming for

novices and increase their skill in programming, although

and it has profound outcome on the performance of

novices in FPL.PAT has significant impact on error

resolution, diagnosis of errors, understanding of errors,

identifying classes of errors in early programming with

ease.

Limitation of study

The limitation of this research that it is confined to only

introductory /first programming course. This study was

confined to imperative languages and not object-oriented

languages. Demographic factors in the evaluation were not

considered in this research and it was confined to static

syntax errors.

ACKNOWLEDGMENT
The authors are obliged to the Department of Computer

science for the benefaction and facility. The authors would

also like to thank all the pupils who contributed to the study.

We are thankful to Mr.Yashran and Mrs.MumtazIdress for

their encouragement and support. We are thankful to Mr.

Saeed Kaker, Mr.Umer for their support.

REFERENCES
Algaraibeh, San’a M., Tonia A. Dousay, and Clinton L.

Jeffery. 2020. “Integrated Learning Development

Environment for Learning and Teaching C/C++

Language to Novice Programmers.” Proceedings -

Frontiers in Education Conference, FIE.

Ben-ari, Mordechai Moti. 2007. “Compile and Runtime

Errors in Java.” 1–28.

Cooper, Stephen, Wanda Dann, and Randy Pausch. 2003.

“Teaching Objects-First in Introductory Computer

Science.” In SIGCSE Bulletin (Association for

Computing Machinery, Special Interest Group on

Computer Science Education).

Denny, Paul, Andrew Luxton-Reilly, and Dave Carpenter.

2014. “Enhancing Syntax Error Messages Appears

Ineffectual.” ITICSE 2014 - Proceedings of the 2014

Innovation and Technology in Computer Science

Education Conference 273–78. doi:

10.1145/2591708.2591748.

Donna Teague, and Paul Roe. 2008. “Collaborative Learning

- towards a Solution for Novice Programmers.”

Conferences in Research and Practice in Information

Technology Series 78:147–53.

Hartmann, Björn, Daniel MacDougall, Joel Brandt, and Scott

R. Klemmer. 2010. “What Would Other Programmers

Do? Suggesting Solutions to Error Messages.”

Conference on Human Factors in Computing Systems -

Proceedings 2:1019–28. doi:

10.1145/1753326.1753478.

Hooshyar, D., R. B. Ahmad, M. Yousefi, F. D. Yusop, and S.

J. Horng. 2015. “A Flowchart-Based Intelligent

Tutoring System for Improving Problem-Solving Skills

of Novice Programmers.” Journal of Computer Assisted

Learning, 31 (4): 345–61. doi: 10.1111/jcal.12099.

Karvelas, Ioannis, Joe Dillane, and Brett A. Becker. 2020.

“Compile Much? A Closer Look at the Programming

Behavior of Novices in Different Compilation and

Error Message Presentation Contexts.” ACM

International Conference Proceeding Series 59–65. doi:

10.1145/3416465.3416471.

Malik, Shafaque Saira, Shumail Naveed, and Furqan-ul-haq

Siddiqui. 2020. “Creation of CFG Based Natural

Language Framework for Explication of Syntax Errors

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

in First Programming Language Featuring Novices.”

LC International Journal of STEM 1 (2). doi:

10.47150/jstem014.

Malik, Shafaque Saira, Shumail Naveed, Furqan-ul-haq

Siddiqui, and Mohammed Umer. 2020.

“Implementation of CFG Based Natural Language

Framework in Description of Syntax Errors in

Imperative First Programming Languages: A Case

Study from University of Baluchistan.” 8–17.

Malik, Sohail Iqbal, and Jo Coldwell-Neilson. 2017. “A

Model for Teaching an Introductory Programming

Course Using ADRI.” Education and Information

Technologies 22 (3): 1089–1120. doi: 10.1007/s10639-

016-9474-0.

Marceau, Guillaume, and Kathi Fisler. 2009. “Mind Your

Language: On Novices ’ Interactions with Error

Messages.” 3–17.

Marceau, Guillaume, Kathi Fisler, and Shriram

Krishnamurthi. 2011. “Measuring the Effectiveness of

Error Messages Designed for Novice Programmers.”

SIGCSE’11 - Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education 499–504.

doi: 10.1145/1953163.1953308.

Munson, Jonathan P., And Elizabeth A. Schilling. 2016.

“Analyzing Novice Programmers’ Response To

Compiler Error Messages.” Journal of Computing

Sciences in Colleges 31 (3): 53–61.

Porter, Ron, and Paul Calder. 2004. “Patterns in Learning to

Program: An Experiment?” Proceedings of The Sixth

Conference On Australasian Computing Education

(30): 241–46.

Robins, Anthony V. 2019. “Novice Programmers and

Introductory Programming.” In The Cambridge

Handbook of Computing Education Research.

Sampson, Demetrios G., J. Michael Spector, Dirk Ifenthaler,

Pedro Isaías, and International Association for

Development of the Information Society (IADIS). 2017.

“Proceedings of the International Association for

Development of the Information Society (IADIS)

International Conference on Cognition and Exploratory

Learning in Digital Age (14th, Vilamoura, Algarve,

Portugal, October 18-20, 2017).” International

Association for Development of the Information Society.

Schliep, Paul A. 2015. “Usability of Error Messages for

Introductory Students.” Morris Undergraduate Journal

2 (2).

Siti Rosminah, MD Derus, and Mohamad Ali Ahmad

Zamzuri. 2012. “Difficulties in Learning Programming:

Views of Students.” 1st International Conference on

Current Issues in Education (ICCIE2012) 74–78.

Traver, V. Javier. 2010. “On Compiler Error Messages: What

They Say and What They Mean.” Advances in Human-

Computer Interaction 2010. doi: 10.1155/2010/602570.

BIOGRAPHY
Indicate the level of contribution of each author. All authors

should include biographies with photo at the end of regular

papers.

Personal profile which contains details about their email id,

education, publications, research work, membership, and

achievements with photo and will be maximum 100-150

words.

Shafaque Saira Malik was born in

Quetta, Pakistan.She received the

BCS. degree in computer science

from the Allama Iqbal Open

University, ISB, Pakistan and

MCS from UOB, Quetta, Pakistan.

ETE From AIT, Thailand and

STKLC from Ehwa University, Seoul, South Korea.

In 2007, she joined the Department of Computer Science and

Information Technology, University of Baluchistan as

Lecturer. Her current research interests include programming,

agile programming, pair programming, computer science

education. She is Coordinator for University of Baluchistan,

and is a Fellow of National Academy of Young Scientists

Pakistan; She has received Technology award in Invention

for Innovation Summit (2019).

ISSN: 2708-7123 | Volume-01, Issue Number-04 | December-2020
LC INTERNATIONAL JOURNAL OF STEM

Web:www.logicalcreations.org/stem | www.lcjstem.com | DOI: https://doi.org/10.47150

Furqan-ul-haqSiddiui was born in

Mastung, Pakistan. He did

graduation in Commerce from UOB,

Quetta, Pakistan and MBA from

UOB, Quetta, Pakistan. He did MS

from Iqra University, Karachi,

Pakistan,In 2007, joined Institute of Management Science,

University of Baluchistan as Lecturer. He is now serving as

Assistant Professor.

Atiq Ahmed completed his MS and

PhD from the University of

Technology of Troyes, France in

2007 and 2010, respectively.

Currently, he is working as an

 associate professor at the

Department of Computer Science and IT in University of

Balochistan (Pakistan). He has also served as the Director of

the office of Research, Innovation and Commercialization

(ORIC) in the same institution from 2012-14. He has

published his research works in several well renowned

conferences and journals like IEEE LCN, AICT, IEEE

Communication Surveys & Tutorials, Annals of

Telecommunication, etc. He has participated in several

projects funded by AgenceNationale de la Recherche,

European Union, British Council, ICT R&D and HEC. He

has served as a reviewer for various journals and conferences

like Computer Networks, IEEE Globecom, ICC, VTC,

Journal of information Technology, IEEE AICT, IEEE

AICSAA, IEEE MASS, SRJ, AMRJ... His research interests

include Internet of Things, service continuity in wireless

networks, autonomic networks, SDN and 5G networks,

wireless sensor networks, network intelligence with the

multi-agent systems, intrusion detection, quality of service,

TMN and cloud computing.

IhsanUllah is working as Assistant

Professor in department of Computer

Science & IT, university of

Balcohistan, Quetta, Pakistan. He

completed his Ph.D degree under the

supervision of Dr. Guillaume Doyen

and Dr. Dominique Gaiti from Universite de Technologie de

Troyes in 2011.

He got his Master of Computer Science degree from the same

university in 2008. His research interests include P2P

networks, video streaming, user behavior, Quality of Service

and intelligence in P2P streaming networks. He has published

several international journal articles as well as has presented

in prestigious conferences such as IM, AIMS and CNSM. He

has served as a reviewer for several conferences and journals

and has also evaluated national research projects proposals

for funding approval submitted to ICT R&D Fund (IGNITE).

